対談 CONVERSATION

【HERO X × JETRO】車の「目」はこう変わる!自動運転技術加速を支える新技術

HERO X 編集部

JETROが出展支援する、世界最大のテクノロジー見本市「CES」に参加した注目企業に本誌編集長・杉原行里が訪問。独自のスキャナーとFMCW測定系を組み合わせることで、従来の LiDAR(ライダー)を超える次世代型のLiDARシステム開発に成功した株式会社SteraVision(ステラビジョン)。完全自動運転を実現可能にする独自技術について同社CEOの上塚尚登氏に話しを聞いた。

独自技術で新しい市場価値を創ることをめざす
産総研発のベンチャー企業

杉原:産総研発のベンチャー企業ということですが、具体的にどのようなことをしている会社なのでしょうか。

上塚:産総研(国立研究開発法人産業技術総合研究所)というのは、日本に3組織しかない特定国立研究開発法人の一つで、茨城県つくば市にあるつくば本部エリアにあるのですが私たちはその一部にある4部屋を借りて、研究・開発に取り組んでいます。本社は産総研の隣にあって、つくば市が運営するインキュベーション施設(株式会社つくば研究支援センター内つくば創業プラザ)のシェアオフィスを借りているんです。

左「HERO X」編集長・杉原と右SteraVision CEO・上塚氏

杉原:設立は最近ですか?

上塚:2016年12月です。産総研で培われた光通信技術を応用して、独自方式の光ビームステアリングデバイスと、FMCW方式の測定システムを組み合わせた次世代型LiDAR(Light Detection and Ranging:光による検知と測距)の開発と製造販売をやっています。製品としては、“Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”があります。

車の中でお酒も飲めるし仕事もできる、
完全運転をめざす

上塚:Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”は、独自に開発した、これまでにない新しい形のスキャナーです。これによって我々がめざすのは完全自動運転の実現です。

杉原:一般の車でも、最近はアクセルを離しても設定した速度のまま走り続けるクルージング機能や、車間距離を保ってくれる機能など、自動運転にかなり近づいていますが、ステラビジョンではそれをさらに進化したものにする技術を開発中だと伺いました。実際のところ、今、一般的な車両についているものは、まだ自動運転と言えるものではないですよね。

上塚:そうですね。ご指摘の通り、ドライブアシストと完全自動運転はかなり異なります。自動運転のレベルには0から5までがあり、レベル2まではドライブアシストです。ここでは事故が起きたときはドライバーが責任を持ちます。それに対して完全自動運転では、人が運転することはなく、車の中でお酒も飲めるし仕事もできるといった、新たな価値も生まれます。その一方で、事故が起ればシステムが全ての責任をもたなければなりません。

杉原:レベル4くらいを開発目標にしている、というのが世の中の潮流でしょうか。

上塚:そうですね。我々が目指すのは「完全」自動運転、つまりレベル5ということになります。実は自家用車の完全自動運転は伸び悩んでいて、どこが伸びているかというとトラックの完全自動運転です。コロナ禍で買い物へ行かなくなった代わりに、在宅で注文する機会が増え、輸送用トラックの出荷台数が凄い勢いで伸びている。そんな中で、トラックの完全自動運転、特に高速道路の完全自動運転のニーズが増加しています。ドライバーの身体的負担を減らすだけではなく、燃費も良くなります。ガソリンが高騰していることもあり、アメリカでは本当によく伸びているんですよ。

杉原:なるほど。そして、ズバリ、御社の製品の強みはどのあたりになるのでしょうか?

上塚:我々のLiDARは、大きくふたつの技術を持っておりまして、ひとつがスキャナーです。LiDARというのは、光の方向を見ながら戻ってきた光で、距離と速度も求めることができるというシステムです。その距離と速度を求めるために、我々は光の波の性質を利用する『FMCW(Frequency Modulated Continuous Wave radar:周波数変調連続波レーダー』という方式を採用しています。これを利用して「完全自動運転」に必要な“目”を作ろうというのが我々の目標です 。

距離を測るLiDARの方式としてはToF(Time Of Flight:光の飛行時間)というのが主流なので、LiDARのスタートアップは、アメリカを中心に世界で百数十社がある中で、ほとんどがToFを採用しています。これは光の粒の性質を利用して光を外に出して、戻ってきた光の粒をカウントするという方式で、光が戻る時間から距離や速度を求めるやり方です。光は1秒間に地球を7周半するのですが、実は我々から見ると光の速度は非常に遅い。というのも、戻ってくるのにだいたい1マイクロ秒かかるからです。つまり、300メートルくらい先へ行くのに1マイクロ秒も必要ということです。往復で2マイクロ秒かかる。エレクトロニクスで言うと2マイクロ秒は遅いんです。ですから、我々は別の方法を考えたのです。

また、ToFは太陽や対向車からの光の影響を非常に受けやすいという問題もあります。そのため、ToFは「ドライブアシスト」のために用いることはできるのですが、我々が目指す更に高いレベルの「完全自動運転」には向かない。

杉原:それで、新技術を開発しているということですね。

上塚:はい。産総研で培われた光通信技術を応用して、光ビームによる FMCW方式の測定系を開発しました。これにより、見たいところ(必要なところ)を好きなだけ詳しく“見る”(ワープスキャン)ができるようになりました。

ワープスキャンを使うと運転に必要な情報だけを見られるようになる。

杉原:2016年に上塚さんとCTOの所武彦さんで創業されたということですが、2人は元々ライダーやセンサーに関する研究をされていたんですか?

上塚:我々のヒストリーは、実は光通信部隊なんです。私は光通信のデバイスなどの分野をやっていて、2019年に入社した所は光トランシーバー関係の開発をしていました。実はFMCWというのは光通信のデジタルコヒーレント通信とほとんど同じなんです。だからそのまま進んでいたら、非常にうまくいったんです。

杉原:なるほど。そこから、ToFのほうが世界的な潮流として使われていたけどもFMCW が来るだろうと踏んだということですよね。重複するかもしれませんが、従来のLiDARとの大きな違いはどのあたりになるのでしょうか。

上塚:我々はLiDAR単独ではなく、カメラと組み合わせることで、たとえば運転中の、物体が右から左へ、前から後ろにくるという動きに合わせて、必要なところを詳しくスキャンできます。ここが我々の優位性です。

カメラは全体を見るのは優れていますが、無駄な情報を省き、いかに効率化するか、つまり「見たいところだけ見る」というのが我々の会社のスローガンです。運転中に必要なのは、運転に必要な情報だけです。空とか地面とか見ても仕方がない。無駄な情報もすべて処理すると、コンピュータパワーも使いますし、エネルギー的にも無駄が多いんです。

杉原:車にスーパーコンピュータを積むわけにいきませんからね。これはすごいですね、面白いですね。

上塚:対象が人なのか猫なのか、ボールなのかは、ディープラーニングで物体認識もできます。たとえば人とか車とか、衝突の危険性があるものはまずカメラで認識します。そうすると、その右側にあるステラビジョンのLiDARで実際の距離を測り、情報を色で表します。距離により色分けをして、赤だと遠い、青だと近い、緑が中間ぐらい。そして、それが「車」か「人」だとなったら、そこまでの距離により衝突する可能性があるかどうかを判断、危ない場合はブレーキをかける。運転に必要最低限の情報さえ取り込めれば、これだけのことができます。データ処理を極限まで減らし、重要な物は見落とさない独自の技術があるため、車だけでなく、健康医療分野への応用にも期待がかかっているところです。

杉原:僭越ながら、僕がとても刺さったのは、データの重さが全く変わるところです。軽くなるから情報を処理するスピードも上がるわけですよね。

上塚:それです! まさにその通りです! 要は自動運転といっても、ある程度車のスピードを上げられなければ意味がない。車が速く動けば、それだけ早く情報が上がってこないと、事故につながりかねない。そうなるとやはり情報は高速でほしいわけです。ただし、それを全画面の全距離を無限で測るとしたら、それはスーパーコンピュータの処理が必要です。このようにデータ処理を極限まで減らし、ただし重要な物は見落とさないというのが重要なのです。

杉原:素晴らしいです。僕らの目にも欲しいですね。

上塚:人間の目はそもそもそういうことをやっているんです。景色を見ているけど見てるのは自分の関心があるところだけだし、目に入った情報のすべてを脳は処理していませんよね。

杉原:そのとおりですね。

上塚:それを、実際のコンピュータやLiDAR、光学センサーを使って実現しましょうというのが我々のコンセプトである「見たいところを見る」ということです。

杉原:今回はCESにも出展されていますが、反響はありましたか?

上塚:はい。今引き合いがいっぱいあって、独自性を非常に高く評価してくださる方が多いですね。アメリカから来た方や、駐在の方も来られましたので話をして、海外の方からも是非取り入れたいと言っていただきました。

杉原:自動運転のレベル4レベル5の話もそうですし、健康データだったり、様々なものも含めて世の中を大きく変えていける可能性を感じます。

上塚:そうですね。実際に、健康関係のところからも引き合いはあります。

杉原:個人的にも大変興味深いお話でした。ぜひ御社へ足を運んで、実際に技術を拝見させてください! 今日はありがとうございました。

上塚尚登 (うえつか・ひさと)
1981年東京工業大学を卒業。 専門領域は光デバイス技術。 日立電線(現 日立金属)に入社し,光通信デバイスビジネスを立上げた。 社内ベンチャーのヘッドとして約100億までの部門に成長させた経験を持つ。

関連記事を読む

(text: HERO X 編集部)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

悲惨な事故を激減できるか?データ活用が可能にする〝未事故〟社会

宮本さおり

ドライブレコーダーの普及と共に、もはや当たり前のようにいわれ始めた運転にまつわるセンシング。先日、高齢者の運転により母子の命を奪われた痛ましい事故の初公判が行われたばかりだが、被告はあくまでも「車の不具合」が理由だと主張し注目を集めた。交通事故は誰にでも起きうることだが、裁判で白黒がついたとしても失われた命が戻ることはない。ドライバーや歩行者が気をつけるべきこともあるが、人間の感覚だけに頼らない、事故を未然に防ぐ試みが多方面ではじまっている。あらゆる移動にまつわるセンサーデータを収集、解析することで社会に役立てようとする株式会社スマートドライブでは、事故を未然に防ぐことにも活用できそうなデータ活用プラットフォームを構築、今後は渋滞緩和などにも役立てたいと語っている。同社CEOの北川烈氏を編集長・杉原行里が訪ねた。

技術と実生活を結んで
革新をおこす

杉原:実は、僕がRDSでやっていることと、スマートドライブさんがされていることで近いなと思うところがありまして、今日はお話を伺いにきました。

北川:ありがとうございます。

杉原:僕たちはセンシングで全身を可視化して、今後はプライベートブロックチェーンで、未病や自分の身体の最適解を知ることなどをやっていきたいと思っているんです。スマートドライブさんがされていることは、考え方として非常に近いことを「移動」という分野においてされているなと感じているのですが。

北川:我々は〝動くもの〟を軸に考えてデータプラットフォームを作ろうとしています。一番多いものとしては車なんですけど、最近ですと人の動きや、そのセンサーデータ、さらにその周辺の情報で、例えば、事故を起こした場合に、その周辺情報をひとつのプラットフォームに集めて解析するようなこともはじめています。例えば運転にまつわるデータですと、集めたデータを解析するアルゴリズムがいくつかあって、それを他社に提供して、新しい保険を一緒に作るとか、自動車メーカーの新しいサービスを作るとか、マーケティング戦略を一緒に作るといったような事業と、そのプラットフォームを活用し我々自身がSaaSのサービスを展開しています。

事業概要を説明する株式会社スマートドライブ北川氏

 

杉原:なるほど。もともとスマートドライブって、北川さんが立ち上げられたのですか?

北川:そうです。私が大学院にいるときに、移動体などの時系列処理のデータ分析研究をやっていたのですが、それを社会実装したいなと思ったことがきっかけで創業した会社です。

杉原:創業はいつ頃ですか?

北川:2013年の末ですね。

杉原:ものすごくいいところに視点を置かれましたね。これから一番トレンドになるところですよね(笑)。日本はいま、海外の先進国と比べるとデータサイエンティスト不足で大変なことになっているといわれていますが、御社には盤石な体制がありますよね。データの集積や解析に、そもそも興味を持たれたきっかけは何かあったのですか?

北川:大学院って、研究テーマがたくさんあると思うのですが、私の場合は技術的な領域と自分の実生活が密接に結び付くところがいいなと思っていました。大学院の研究領域だと、技術的にはすごいけど、リアリティーがない世界ってあるんですよね。私はそういうものよりは、やはり実生活の課題を解決するとか、自分では “肌触りがある領域” という言い方をするんですけど、そういった領域のものがいいなと感じていて、研究室でも実世界の問題に応用が効くとか、技術をメディアアートなどの表現に応用することを推奨されて、自由に研究することを許してくれていました。そんな中、このテーマに出会って腹落ちをしたというのがきっかけです。だから、車の渋滞をどうしたら解消できるのかなど、身近な問題に目を向けるようになっていったんです。

〝車に乗るのが嫌い。〟
から始まった開発

杉原:僕たちがRDSでプロダクトを開発するときに、“自分ごと化” という言葉をよく使うんですけれども、それと近いのかなと。自分の身の回りに起きていることではない、もう少し先のことまで言ってしまうと、その感覚値にズレが生じてしまいますよね。例えば今の北川さんのお話だと、車の渋滞をどうやって解消するかって、渋滞を解消してほしくない人なんていないですもんね(笑)。

北川:そうですよね。私がこの話をするとネタっぽくなってしまうんですけど、実は私、あまり車が好きではないんです。車酔いをしてしまうので、できれば乗りたくない。
そんななか、事故や渋滞、車酔いといった移動における負の部分が、今後自動運転技術などの進歩で解決されていくという社会を早く実現させたいなという思いで創業しました。

杉原:北川さんの会社では、異業種とのパートナーシップや提携をされている。いろんな領域にプラットフォームで培われたアルゴリズムを提供されているという印象を受けたのですが、根幹となる技術やアルゴリズムになにか違いはあるのですか?

北川:基本は同じです。そのベースとなるものを保険に使うか技術に使うかによっての差はありますが、根底の部分は同じです。

杉原:今はどのようなことをされているのですか?

北川:分かりやすい例でお話しすると、一日の運転を数十万通りの軸でデータポイントを取り分けて、そこで機械学習をさせたりしています。だいたい2週間くらいかけてデータを取ると、その人が事故を起こす確率をかなりの高確率で当てられるんです。また、エンジンをかけた瞬間にその人がどこに行くかを推定するような研究開発も行っています。

杉原:それはすごい!!

北川:そういったR&D(研究開発)要素も含まれたアルゴリズムもあれば、リアルタイムにいろんなところから上がってくるセンサーデータを、APIとして様々なサービスに使えるようにすることもしています。

杉原:今のお話の中に出てきたR&D的な要素でいくと、例えばステアリングを握った感覚とか、ドアの開閉時の力の強弱なんかも含めて、この人がこれからどこに行くのかを推測したりするということですか?

北川:今はまだそこまではいっていないのですが、そういったデータが取れるようになれば、もっと精度は上がってくると思います。今我々が取っているのはGPSとかカメラの情報なので、その時の天気とか、エンジンをかけた時間帯とか、過去の行動履歴から推定できないかということをやっています。あとは、タイヤのメンテナンス時期をお知らせできるといったようなことです。集積したデータを使えば、故障を予測することも出来るようになります。

事故を未然に防ぐ仕組み

杉原:医療の側面から考えると未病を認知する感じですよね。僕は車が好きなので、タイヤ交換しない人やタイヤの空気圧を調べない人が信じられないんです(笑)。事故の要因として、車の整備不良もかなりの割合を占めていると思われますし、整備不足を指摘してくれるだけでも事故や故障を未然に防ぐことにつながりそうですよね。そのほかには、どんなことをされているのでしょうか。

北川:2つあります。ひとつは、我々はDX1.0と呼んでいるのですが、企業運営を考える時、社員であったり、物であったりがどこを移動しているかが分かったり、安全運転の度合いが分かるだけで、移動効率が上がるんですよね。例えば、営業車両の位置が分かれば、どういう動きをしていたのかを把握できる。そのデータを使えば、個人がいちいち日報を付けなくても、自動で日報が上がってくるとか、そういった移動にまつわる業務プロセスがDX化されるみたいなものって、実はまだまだ出来ていない。そこに対して我々は車両の管理とか、ドライバーの事故を無くすといったプロダクトや見守りみたいなものを出しています。

杉原:つまり、移動にまつわるDXを広く浅くやっていこうとされている。

北川:そうです。

杉原:その仕組みは物流などにも広く利用できそうですよね。

北川:そうですね。先ほどご質問いただいた、リスクや故障、行動を予測するというのは、我々としてはプラットフォーム事業と呼んでいるところで、これをパートナーと一緒に、例えば保険と組み合わせることで、安全運転をしている人は保険が安くなるといったような価格が変動する保険が作れますよとか。車を買ったら終わりではなくて、その後のメンテナンスまで完璧にサポートされている車が手に入りますよといったように、弊社のプラットフォーム×他社のサービスで、より深いDXをしていけないかと考えているのです。それをDX2.0と呼んでいて(笑)。広く浅くと、パートナーと深くつくっていくという、この2つの事業を展開しているところです。

杉原:おもしろいですね。DX3.0 、DX4.0はどうなっていくのか、これから楽しみですね。先ほど北川さんがおっしゃっていたように、物流にその技術が入っていったとき、僕たち消費者側もデータ提供を行っていれば、家にいて受け取れる時間帯に事前確認する必要なく配達してらえたりしますよね。

北川:弊社の強みは、そういったプラットフォームとして他社にいろんな形で提供できるということと、それによって、いろんなものとデータを連携しやすいということなんです。

杉原:ビッグデータが集まってくるということですよね。ということは、そのビッグデータにアクセスできる権利を、パートナーと契約しながらやっていくというのが現在のスマートドライブさんのビジネスモデルということですよね。

北川:おっしゃる通りです。ゆくゆくはマーケットプレイスみたいなイメージで、いろんな会社をつないでいくと、自動的に他社とつながってサービスの幅が広がっていくというというところまで出来てくれば、そこがDX3.0 といったところでしょうか(笑)。

杉原:すごいな。もう3.0まできましたね(笑)。楽しみです。

(プロフィール)
北川烈(きたがわ・れつ)
SmartDrive 代表取締役 (CEO) 。慶應義塾大学在籍時に国内ベンチャーでインターンを経験、複数の新規事業立ち上げに参加。その後、1年間米国に留学、エンジニアリングを学んだのち、東京大学大学院に進学。研究分野は移動体のデータ分析。その中で、今後自動車のデータ活用、EV、自動運転技術が今後の移動を大きく変えていくことに感銘を受け、在学中にSmartDriveを創業した。
https://smartdrive.co.jp

(text: 宮本さおり)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー