対談 CONVERSATION

【HERO X × JETRO】車の「目」はこう変わる!自動運転技術加速を支える新技術

HERO X 編集部

JETROが出展支援する、世界最大のテクノロジー見本市「CES」に参加した注目企業に本誌編集長・杉原行里が訪問。独自のスキャナーとFMCW測定系を組み合わせることで、従来の LiDAR(ライダー)を超える次世代型のLiDARシステム開発に成功した株式会社SteraVision(ステラビジョン)。完全自動運転を実現可能にする独自技術について同社CEOの上塚尚登氏に話しを聞いた。

独自技術で新しい市場価値を創ることをめざす
産総研発のベンチャー企業

杉原:産総研発のベンチャー企業ということですが、具体的にどのようなことをしている会社なのでしょうか。

上塚:産総研(国立研究開発法人産業技術総合研究所)というのは、日本に3組織しかない特定国立研究開発法人の一つで、茨城県つくば市にあるつくば本部エリアにあるのですが私たちはその一部にある4部屋を借りて、研究・開発に取り組んでいます。本社は産総研の隣にあって、つくば市が運営するインキュベーション施設(株式会社つくば研究支援センター内つくば創業プラザ)のシェアオフィスを借りているんです。

左「HERO X」編集長・杉原と右SteraVision CEO・上塚氏

杉原:設立は最近ですか?

上塚:2016年12月です。産総研で培われた光通信技術を応用して、独自方式の光ビームステアリングデバイスと、FMCW方式の測定システムを組み合わせた次世代型LiDAR(Light Detection and Ranging:光による検知と測距)の開発と製造販売をやっています。製品としては、“Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”があります。

車の中でお酒も飲めるし仕事もできる、
完全運転をめざす

上塚:Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”は、独自に開発した、これまでにない新しい形のスキャナーです。これによって我々がめざすのは完全自動運転の実現です。

杉原:一般の車でも、最近はアクセルを離しても設定した速度のまま走り続けるクルージング機能や、車間距離を保ってくれる機能など、自動運転にかなり近づいていますが、ステラビジョンではそれをさらに進化したものにする技術を開発中だと伺いました。実際のところ、今、一般的な車両についているものは、まだ自動運転と言えるものではないですよね。

上塚:そうですね。ご指摘の通り、ドライブアシストと完全自動運転はかなり異なります。自動運転のレベルには0から5までがあり、レベル2まではドライブアシストです。ここでは事故が起きたときはドライバーが責任を持ちます。それに対して完全自動運転では、人が運転することはなく、車の中でお酒も飲めるし仕事もできるといった、新たな価値も生まれます。その一方で、事故が起ればシステムが全ての責任をもたなければなりません。

杉原:レベル4くらいを開発目標にしている、というのが世の中の潮流でしょうか。

上塚:そうですね。我々が目指すのは「完全」自動運転、つまりレベル5ということになります。実は自家用車の完全自動運転は伸び悩んでいて、どこが伸びているかというとトラックの完全自動運転です。コロナ禍で買い物へ行かなくなった代わりに、在宅で注文する機会が増え、輸送用トラックの出荷台数が凄い勢いで伸びている。そんな中で、トラックの完全自動運転、特に高速道路の完全自動運転のニーズが増加しています。ドライバーの身体的負担を減らすだけではなく、燃費も良くなります。ガソリンが高騰していることもあり、アメリカでは本当によく伸びているんですよ。

杉原:なるほど。そして、ズバリ、御社の製品の強みはどのあたりになるのでしょうか?

上塚:我々のLiDARは、大きくふたつの技術を持っておりまして、ひとつがスキャナーです。LiDARというのは、光の方向を見ながら戻ってきた光で、距離と速度も求めることができるというシステムです。その距離と速度を求めるために、我々は光の波の性質を利用する『FMCW(Frequency Modulated Continuous Wave radar:周波数変調連続波レーダー』という方式を採用しています。これを利用して「完全自動運転」に必要な“目”を作ろうというのが我々の目標です 。

距離を測るLiDARの方式としてはToF(Time Of Flight:光の飛行時間)というのが主流なので、LiDARのスタートアップは、アメリカを中心に世界で百数十社がある中で、ほとんどがToFを採用しています。これは光の粒の性質を利用して光を外に出して、戻ってきた光の粒をカウントするという方式で、光が戻る時間から距離や速度を求めるやり方です。光は1秒間に地球を7周半するのですが、実は我々から見ると光の速度は非常に遅い。というのも、戻ってくるのにだいたい1マイクロ秒かかるからです。つまり、300メートルくらい先へ行くのに1マイクロ秒も必要ということです。往復で2マイクロ秒かかる。エレクトロニクスで言うと2マイクロ秒は遅いんです。ですから、我々は別の方法を考えたのです。

また、ToFは太陽や対向車からの光の影響を非常に受けやすいという問題もあります。そのため、ToFは「ドライブアシスト」のために用いることはできるのですが、我々が目指す更に高いレベルの「完全自動運転」には向かない。

杉原:それで、新技術を開発しているということですね。

上塚:はい。産総研で培われた光通信技術を応用して、光ビームによる FMCW方式の測定系を開発しました。これにより、見たいところ(必要なところ)を好きなだけ詳しく“見る”(ワープスキャン)ができるようになりました。

ワープスキャンを使うと運転に必要な情報だけを見られるようになる。

杉原:2016年に上塚さんとCTOの所武彦さんで創業されたということですが、2人は元々ライダーやセンサーに関する研究をされていたんですか?

上塚:我々のヒストリーは、実は光通信部隊なんです。私は光通信のデバイスなどの分野をやっていて、2019年に入社した所は光トランシーバー関係の開発をしていました。実はFMCWというのは光通信のデジタルコヒーレント通信とほとんど同じなんです。だからそのまま進んでいたら、非常にうまくいったんです。

杉原:なるほど。そこから、ToFのほうが世界的な潮流として使われていたけどもFMCW が来るだろうと踏んだということですよね。重複するかもしれませんが、従来のLiDARとの大きな違いはどのあたりになるのでしょうか。

上塚:我々はLiDAR単独ではなく、カメラと組み合わせることで、たとえば運転中の、物体が右から左へ、前から後ろにくるという動きに合わせて、必要なところを詳しくスキャンできます。ここが我々の優位性です。

カメラは全体を見るのは優れていますが、無駄な情報を省き、いかに効率化するか、つまり「見たいところだけ見る」というのが我々の会社のスローガンです。運転中に必要なのは、運転に必要な情報だけです。空とか地面とか見ても仕方がない。無駄な情報もすべて処理すると、コンピュータパワーも使いますし、エネルギー的にも無駄が多いんです。

杉原:車にスーパーコンピュータを積むわけにいきませんからね。これはすごいですね、面白いですね。

上塚:対象が人なのか猫なのか、ボールなのかは、ディープラーニングで物体認識もできます。たとえば人とか車とか、衝突の危険性があるものはまずカメラで認識します。そうすると、その右側にあるステラビジョンのLiDARで実際の距離を測り、情報を色で表します。距離により色分けをして、赤だと遠い、青だと近い、緑が中間ぐらい。そして、それが「車」か「人」だとなったら、そこまでの距離により衝突する可能性があるかどうかを判断、危ない場合はブレーキをかける。運転に必要最低限の情報さえ取り込めれば、これだけのことができます。データ処理を極限まで減らし、重要な物は見落とさない独自の技術があるため、車だけでなく、健康医療分野への応用にも期待がかかっているところです。

杉原:僭越ながら、僕がとても刺さったのは、データの重さが全く変わるところです。軽くなるから情報を処理するスピードも上がるわけですよね。

上塚:それです! まさにその通りです! 要は自動運転といっても、ある程度車のスピードを上げられなければ意味がない。車が速く動けば、それだけ早く情報が上がってこないと、事故につながりかねない。そうなるとやはり情報は高速でほしいわけです。ただし、それを全画面の全距離を無限で測るとしたら、それはスーパーコンピュータの処理が必要です。このようにデータ処理を極限まで減らし、ただし重要な物は見落とさないというのが重要なのです。

杉原:素晴らしいです。僕らの目にも欲しいですね。

上塚:人間の目はそもそもそういうことをやっているんです。景色を見ているけど見てるのは自分の関心があるところだけだし、目に入った情報のすべてを脳は処理していませんよね。

杉原:そのとおりですね。

上塚:それを、実際のコンピュータやLiDAR、光学センサーを使って実現しましょうというのが我々のコンセプトである「見たいところを見る」ということです。

杉原:今回はCESにも出展されていますが、反響はありましたか?

上塚:はい。今引き合いがいっぱいあって、独自性を非常に高く評価してくださる方が多いですね。アメリカから来た方や、駐在の方も来られましたので話をして、海外の方からも是非取り入れたいと言っていただきました。

杉原:自動運転のレベル4レベル5の話もそうですし、健康データだったり、様々なものも含めて世の中を大きく変えていける可能性を感じます。

上塚:そうですね。実際に、健康関係のところからも引き合いはあります。

杉原:個人的にも大変興味深いお話でした。ぜひ御社へ足を運んで、実際に技術を拝見させてください! 今日はありがとうございました。

上塚尚登 (うえつか・ひさと)
1981年東京工業大学を卒業。 専門領域は光デバイス技術。 日立電線(現 日立金属)に入社し,光通信デバイスビジネスを立上げた。 社内ベンチャーのヘッドとして約100億までの部門に成長させた経験を持つ。

関連記事を読む

(text: HERO X 編集部)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

駐車場や空き店舗などの有閑スペースが物流倉庫に変身する!? GROUND株式会社がめざすスマート物流とは?

吉田直子

物流業界で急速に進んでいるテクノロジー化。その背景には、ここ数年で急激に成長したE-コマースの存在がある。消費者が1つのアイテムを通販でいつでもどこでも取り寄せることができる時代。大量で小ロッドのアイテムが行き来する時代に、倉庫ビジネスと配送の仕組みも、もはや従来通りにはいかなくなっている。AIやロボットを活用した物流改革は、今後どこまで進むのだろうか。物流施設の改革に取り組むGROUND株式会社の宮⽥啓友社長に、編集長・杉原が物流の未来を聞く。 ・コストのかさむコンベアとはさようなら ・めざすは物流倉庫のシェアリングモデル ・ロボット開発はビジョンを共有できるパートナーと

コストのかさむ
コンベアとはさようなら

杉原:いま、物流施設では、ハウスウェアデザインなどが進んでいる状況なのでしょうか。

宮田:突き詰めていうと、我々のPEER(ピア)(自律型協働ロボット)は、コンベアの代替にもなり得ます。いままではピッキング作業をしたら、かごをコンベアに載せて、梱包工程までガタガタ運んでもらうのが一般的でしたが、PEERは梱包工程まで自律的に移動しますから、コンベアが不要と言えます。実は、コンベアは1メートル40万円くらいするんです。物流施設を作ると必ずコンベアが必要なので、そこがこれまでは利益の源泉だったんですね。

杉原:それをなくすというのは、大変な戦いですね。

宮田:コンベアは施設の制約にもなります。メインストリームとしてコンベアが敷かれると、そこを横断できなくなるので、迂回する通路を作らなければいけない。でも、PEERのような自律型協働ロボットを導入すると、ビルの一室を物流センターにすることも可能です。従来は物流センターのための建物が求められたのですが、AIやロボットなどの先端テクノロジーを活用すれば、都心の地下駐車場、学校、百貨店、ガソリンスタンドなど、有閑スペースや資産を活用できる。アメリカではマイクロフルフィルメントセンターといって、小型の物流センターが少ずつイノベートされてきています。今後、物流業界には大きなパラダイムシフトが起こると思っています。1つの物流センターを作るために20億かけるという時代ではなくなっていくでしょう。

杉原:GROUNDさんの自律型協働ロボットですが、人間との協働がポイントではないかと思います。なぜ協働にフォーカスされているのでしょうか。

宮田:これはAmazonのジェフ・ベゾス氏も明言していますが、倉庫の完全自動化はあと10年は難しいと思います。仕組みとしては無人化できるのですが、やはり取り扱う商品の制約が出てしまう。ECで扱う商品は長尺のものもあれば、小さいものもあります。それを一つの概念で処理しようとすると、非常にムダが多くなる。なので、投資対効果が見合わない。ロボットが自動で次工程まで動いていくから、人は歩く必要はありません。ただ、例えばピンポイントでスカートをピックするというのは、ロボットにはまだできません。
このように人間が得意なこと、人間にしかできないことは人が行い、ロボットが得意なことはロボットに任せる、という協働という形が現時点では最も生産性を向上できると考えます。

人とGROUND社のロボットが協働する様子。作業者は同社のロボット「PEER」に付属するタブレットの案内に従い、指定の商品をピックアップする。

杉原:そうですね。SLAM(Simultaneous Localization and Mapping:センサーによって周囲環境を把握し、マップをつくりつつ、取得したデータをもとにロボットの自身の位置も推定する技術)で1センチ以内の誤差に収めるというのはとんでもない技術なので、キャリブレーションがかなりできていないと厳しいですよね。

宮田:工程ごとにロボットと人間の強みを分解して、人がやるべき作業、ロボットがやるべき作業を選別することが大切です。

杉原:つまり、ロボットと人間、双方のインテリジェンスやアビリティを掛け算しているんですね。補完ではなく拡張。これっていまの世の中にすごく合っていると思います。僕自身は今後ロボット化が進むことで、人間の本来使える時間が増えて、幸せだと思っているのですが、一方でAI化やロボット化で仕事を奪われると言うかたもいます。そこに協働があると、雇用が生まれるという考え方もできる。倫理的なバランスもいい。車もまさにそうで、自動運転化しても、やはりドライバーズシートには人が乗っていて、ステアリングがあるというのと同じではないかと思います。

宮田:近いですね。おっしゃる通り、物流業界の中を完全に無味乾燥なテクノロジーの世界にしていくという考えではありません。ECは伸びていますから、全体的に求められる人手は増えています。その中で、人がやらなくても良い過酷な労働や、業務・作業はロボットに任せる。こういった考えの下、物流業界を持続可能なものにしていくことが大前提です。

めざすは物流倉庫の
シェアリングモデル

杉原:宮田さんはやはり顧客ニーズというか、課題がかなり明確ですよね。今までご経験されたものが根幹にあると思うのですが、そういったご経験から起業を決意されたんですか。それとも、もともと事業のビジョンがあったのでしょうか。

宮田:楽天には7年間勤めたのですが、三木谷さんと一緒にずっとやってきて、Amazonと戦っていくうえでは、自社物流をやらないといけないという気持ちをもっていました。最終的には、当時は自社物流の構築を見送るという経営判断がくだされました。
オープンな物流プラットフォームの重要性と将来性は当時から強く感じていたので、1年準備をして、GROUNDを設立しました。創業メンバーも楽天時代の仲間です。

杉原:今後、AIがディープラーニングをしていった時に、どういう変革が起きますか? 例えば時間が圧倒的に短縮されることをめざしていくのか、それともまた違う展開がありますか。

宮田: ECは波動(物流量の偏り)が大きい業界です。週や月、年間を通した傾向もあります。アスクルは新年度の動きが大きかったですし、アパレルはクリスマスシーズンが伸びます。従来の物流投資というのは、会社の成長を見据えながら、この波動のてっぺんの部分をある程度想定してやっていきます。ですから、最初は投資した中で全体のキャパシティが6割くらいしかなくて、4割くらいはずっと空いている中で成長していきます。ということは、ムダがあるんです。一方で物流の設備は非常に流動性が高まっていて、先ほどの自律型協働ロボットなどを使った施設では、シェアオフィスしやすい。1つの建物の中に波動がかぶらないテナントを誘致すれば、ロボットや人を柔軟にシェアできる、あるいは建物自体も含めてシェアができる。最終的にめざしているのは、いわゆるサブスクモデルですね。利用・シェアした分だけ重量課金していく。もはや、そこでは自社の物量のキャパシティなんて考える必要はない。そこは、我々のAI物流ソフトウェアDyAS(ディアス)がブレーンとなり、様々な解析をして全体最適化を図ります、という形です。

杉原:まさにシェアリングエコノミーですね。一方で、いま、長崎でドローン配送が始まるなど、自動配送、遠隔操作の流れがあります。この潮流は、宮田さんから見ていい方向ですか?

宮田:いい方向ではあるのですが、物を運ぶ上でドローンやロボットを使う前に、やることはあると思います。例えば、ヤマト運輸が3年前に大きく一斉値上げしたのは、従来のCtoCの小包や宅急便が増えたのではなく、Amazonを中心とするECの物量がなだれこんできて、その需要予測ができないために、配車計画が立てられなくなったからです。なにが言いたいのかというと、配送会社に対してある程度精度の高い情報を提供できれば、彼らはそれに基づいて合理化ができるんですね。

杉原:ええ、間違いないですよね。

宮田:それができていない。我々がなぜサプライチェーンの真ん中の物流施設に力を入れているかというと、ひとつには上流工程のデータと配送側のデータが連携していないことで膨大なムダが起きているからです。国交省のデータを見ればわかりますが、実はドライバー不足といいながら、いま全国の営業車両の積載率は4割です。ですから、我々はDyASを使って、あるいは次世代物流センターを普及させることによって、出庫を精度高く予測し、その情報をリアルタイムに近い形で配送会社に対して提供していき、全体の最適化を進めていきたいんです。

ロボット開発はビジョンを
共有できるパートナーと

杉原:HERO Xの読者にはロボットを開発している人も多いので、ロボットで御社に参入できるか?ということが気になると思います。もしくは御社と一緒になにかやることは可能なのでしょうか?

宮田:実際にこのPEERという自律型協働ロボットを物理的に開発しているのは、中国の大手ロボットメーカーです。彼らはビジュアルスラムと制御系の技術に優れているので、本当に性能の高いロボットを開発できます。でも、我々はグローバルで主要なロボットベンチャーメーカーと接触しているのですが、99%物流現場では使えません。なぜかというと、ロボットエンジニアは物流のことがわからないからです。大事なのは本当に実務レベルで使えるものに仕上げられるかということ。彼らには物流の経験も専門知識もないので、我々はそのノウハウを提供する。おそらく、そういう開発になっていくと思います。

杉原:ということは、パートナーは特化した考え方を共有でき、かつ違いの強みを生かせる会社ということですね。

宮田:そうですね。例えばこの中国の企業はビジュアルスラムに非常に優れているけれど、右から左にピッキングするための技術はもっていない。じゃあ、ピッキングのロボットについては、アメリカのSoft Robotics社と提携する、という形ですね。

杉原:そのピッキングは、遠隔操作にならないんですか。

宮田:将来的には十分それは可能だと思います。

杉原:そうしたら、在宅の仕事になりますよね。

宮田:その通りです。そうすると、別に日本である必要もなくなる。

杉原:24時間回せますもんね。

宮田:それを監視するだけでも十分なニーズがあると思います。

宮⽥啓友(みやた・ひらとも)
株式会社GROUND 代表取締役社⻑/CEO
上智⼤学法学部卒。1996年 株式会社三和銀⾏⼊⾏。2000年 デロイトトーマツコンサルティング(現:アビームコンサルティング)⼊社。⼤⼿流通業を中⼼にロジスティクス・サプライチェーン改⾰のプロジェクトに従事。2004年 アスクル株式会社⼊社。ロジスティクス部⾨⻑として⽇本国内の物流センター運営を⾏う。2007年 楽天株式会社⼊社。物流事業準備室⻑を経て2008年 物流事業⻑就任。2010年 楽天物流株式会社設⽴、代表取締役社⻑就任。2012年 楽天株式会社執⾏役員物流事業⻑就任。同年フランスのフルフィルメントプロバイダAlpha Direct Services SASを買収し、マネージングディレクターを兼務する。2013年アメリカのフルフィルメントプロバイダWebgistixを買収。2015年4⽉ GROUND株式会社設⽴。

(text: 吉田直子)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー