対談 CONVERSATION

“アフターコロナ”でどう変わる⁉ 情報学から考える モビリティの現在地とこれから

長谷川茂雄

コロナ禍は、果たして世界の秩序や価値観を大きく変えたのだろうか? その答えは現時点では明言できないが、間違いなく人類はこの“わざわい”の先にある世界を具体的にイメージし始めている。今回の特集のテーマであるモビリティの在り方もそのひとつだ。移動は人類にとっての根源的な行為であるし、そのためのツールであるモビリティは、常にライフスタイルと直結している。ゆえに「アフターコロナ」は、それに見合った新たなモビリティが求められるはずだ。その最適解を導き出すための冷静な視点とガイドラインを、日本におけるコンピューターサイエンス研究の第一人者、佐藤一郎氏に伺った。

いまはモビリティの
定義が変わる転換期

近年、AIや自動運転といった技術面での進歩に注目が集まり、“快適な移動”をもたらすツールであるモビリティに対しては、期待値がかなり高まっていた。

ところが、誰も予想できなかった新型コロナウイルスの感染拡大を受け、その描いた未来をデザインしなおす必要が出てきた。

まずは、これから移動そのものはどうなるのかを捉える必要があるが、そもそも移動には、人と物(物流)の2種がある。両者はどのように変化したのだろうか?

「新型コロナウイルスで、移動というものはかなり制約される状況になりましたし、人の移動に関しては、いかに移動そのものを“させない”かを考える必要も出てきました。これからは、その2つのテーマが並存して進んでいくはずです。モビリティの定義そのものがちょうど変わる、いわば変わり目にいると言えます」

オンラインによる働き方もある程度浸透してきた現在、確かに人は積極的に“移動しない”ようになった。それゆえ、モビリティを使った人の移動を佐藤氏は、「物の移動と分けて考えられなくなった」という。では、物の移動はどうなるのか?

「人の移動が減る分、逆に物の移動は増えます。いわゆるECのような形で多くの人が物を買い、宅配便は増えています。巷で話題になっているウーバーイーツのように、専門物流業者以外に物流を担う人もたくさん出てきています。ITが人々の時間を断片化してきており、普段は別の仕事をしていて、空いた時間に配達の仕事をする人はこれからも増えていくはずで、断片化された空き時間の使い方が、様々な局面で重要となります。あとは、数年おきに注目される“共同物流”もクローズアップされる可能性はあります」

「モビリティの捉え方は、コロナ禍によって大きく変わった」と語る佐藤氏。

共同物流とは、複数の企業が同一のインフラを活用して保管や配送などの作業を行うことだが、コストが削減できる反面、他者に様々な情報が漏れる危険性があったり、業者ごとの細かな要望を共有できないなど問題点も多く、これまでは、長年成功している事例が少ない。

「これからは、ITを駆使して諸問題を解決しながら、コストカットに加えて、環境負荷を軽減する手段として共同物流のメリットを活かそうという流れは出てくるかもしれません。加えて、共同物流は倉庫と小売間といった比較的中距離の物流ですが、例えば東京と大阪間というような長距離でどれだけ効率的に物流を行うか? という課題もあります。トラックだけではなく、鉄道や船など複数の移動手段を使う“モーダルシフト”も、これからより注目される傾向にあります」

東京にはシェアリングと
公共交通の融合型がマッチする

そんな現状を踏まえたうえで、より人の生活に根ざしたモビリティの在り方も考えてみたい。例えば、現在MaaS(マース:Mobility as a Service)という概念がヨーロッパを中心に浸透してきている。マイカー以外のあらゆるモビリティをITでシームレスに結びつけるサービスのことだが、こういう動きは今後加速するといわれる。

例えば、コロナ禍以後、電動自転車などの需要が高まっているという話はよく聞く。身近なところでいえば、シェアサイクルなどのサービスは、日本でもさらに広がっていく可能性はあるのだろうか?

「日本の場合は、東京を見ればわかりますが、基本的に住宅とオフィスが混在していません。海外の都市のようにシェアリング自転車や電動スクーターが浸透するのは難しくなります。シェアリング自転車を例に取ると、東京の場合、朝は多くの人がやや郊外の住宅から最寄駅まで乗っていき、帰りは最寄駅から住宅へと向かいます。そうなると自転車の需要が時間に応じて偏ります。この結果、自転車の再配置の問題が出てきます。

シェアリング自転車置き場には、自転車がなくなってもいけないし、満杯になってもいけませんから、運用事業者はトラックを使って置き場から置き場へ再配置をしなければなりません。表に現れませんが、そこに一番コストがかかるんです。世界の都市で見れば、例えばパリは、住宅とオフィスが混在していますからシェアサイクルは古くから浸透しています。海外の都市におけるビジネスモデルが東京で使えるかというと、そうではないのです」

「世界の別の都市で活用されているモビリティのサービスやシステムが、そのまま日本で適用できるわけではない」。佐藤氏いわく「東京は、公共とシェアの融合を進めるのには有利な街」。

シェアリングモビリティは確かに便利ではあるが、街のスタイルによって向き不向きがあるというのは頷ける。では、日本では、シェアリングの乗り物はまったく向かないか、というとそうではない。公共交通とシェアリングモビリティの“融合型”がマッチするという。

「例えば住宅地ではなく、オフィス街の地下鉄の出入り口の近くに、シェアリング自転車の置き場を作る。そうすると地下鉄を降りたら自転車がすぐ利用できて重宝です。住宅地よりは実現性が高い。その背景は、オフィス街は人々が行き交うので時間に応じた偏りが少ないからです。また、地下鉄駅間は距離が短いことを考慮すると、例えば駅の自転車置き場に自転車が少ない場合は、自転車が残っている隣接する駅まで地下鉄で移動して、そこで自転車を借りるという手法も、地下鉄の事業者と連携すれば可能なはずです。海外でも公共交通とシェアリング自転車の連携は進んでいるとはいえず、東京で先行してみる価値はあるでしょう」

シェアリングと公共のハイブリッドというモビリティとの付き合い方。確かに住宅地とオフィス街が別れていることが多い日本では、それがスマートにフィットしそうだ。ただ、その場合はシェアリングの事業者と公共交通の距離感を今よりも縮めていく必要がある。では、AIに関してはどうだろうか?

ハイブリッド型のシステムを構築したうえで、オフィス街で使うモビリティにAIを搭載して、利便性を上げられないものか?

「モビリティそのものにAIを搭載して、音声で指示を与えて何かをしてもらうとか、自動運転の自転車が駅まで迎えに来てくれるとか、現段階ではそういったパフォーマンスの必要性はあまりない気がします。AIに関しては、ユーザーの意図を事前に予測して、使う自転車を予約してくれるとか、裏方的にユーザーの利便性を高めてくれるような使い方のほうが現実的ではないでしょうか」

自転車や電動スクーターそのもののインテリジェンスを高めるよりも、AIは、“先回り”的なサポート役に使ったほうがより有意義なようだ。さらに自動車においては、安全性のアップデートに使われている。

自動車はモビリティという
システムの一部になる

「これからは、自動車にカメラだけではなく、レーザーを使ったセンサーなどが搭載されるはず。そうなると障害物の発見能力が格段に上がりますから、事故を未然に防ぐ能力も高まります。

さらに、現状の自動運転は、自動車にたくさんセンサーを付けてコンピュータで処理をしていますが、自動車から見える視点には限界がありますから、他の車のカメラを含むセンサー情報も共有できれば、ドライバーの視線を超える視野を得ることになりますし、走る道路そのものにセンサーをつけて情報を共有できれば、さらに安全性は高まります。もはや自動車という閉じた単位ではなくて、それこそモビリティというひとつのシステムの一部が自動車という考え方に変わっていくのだと思います」

「モビリティという大きなシステムが作られるには、難題が多々ある」。それをクリアすることで、人間の生活はさらに大きく変わるのかもしれない。

他のモビリティや道路と連携して情報を共有しながら走るモビリティ。それが未来のモビリティの一つの在り方かもしれない。ただそこにももちろん課題がある。

「街や道路にセンサーを付けるには、それなりのコストがかかります。車の運転のためだけにセンサーを使うのではなく、社会的に他の用途でも使えるようにしなければ、その問題はクリアできません。そしてもっと難しいのは、新規の街ではなく、既存の街の方です。レガシーな場所をどうやってインテリジェント化するのか、ということです。

例えば過去に博物館のスマート化に関する実証実験を、上野の国立科学博物館などでやらせていただきましたが、それは企画展ではなく、既存の展示空間のスマート化でしたが、展示の邪魔をしないことが難題でした。、ショッピングモールなどで景観を損ねずに電源などを確保し、センサーを設置して、コンピュータで制御できるシステムを組み込むことも同じような難しさがあります。複雑に入り組んだ街もそうですし、そもそもそういった場所で、自動運転が可能なのか?という課題もあります」

既存の街や建物、インフラに新しいモビリティというシステムを組み込むことが難しければ、まだ未発達の地域を実験都市的に作り上げるというのも考えられなくはない。

「確かに実験都市というのは、新たなモビリティシステムを作っていくには好都合かもしれません。ただ、そこで得た知見が、既存の街でも応用できるかというと、それは違う部分もあります。また既存の街に関しても、東京などの大都会は複雑すぎます。今後はモビリティの概念が変わったときに都市や街に求められる大きさが違ってくるはず。新しいモビリティを活かすことで、新たな発展を遂げる地域や街が地方から出てくる可能性は、大いにあるのではないでしょうか」

(さとう・いちろう)
国立情報学研究所(NII)・情報社会相関研究系教授。慶應義塾大学理工学部電気工学科卒業。慶應義塾大学大学院理工学研究科計算機科学専攻博士課程修了。博士(工学)。お茶の水女子大学理学部情報学科助教授、国立情報学研究所助教授等を経て、2006年より現職。ほかにランク・ゼロックス客員研究員(1994〜1995年)、科学技術振興事業団さきがけ21研究員(1999〜2002年)等を務める。仮面ライダーゼロワンのAI技術アドバイザー(2019年)としても知られる。

(text: 長谷川茂雄)

(photo: 壬生真理子)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

目指すはAIの民主化。低コストAIで企業を応援したい

小泉恵里

なんとなく理解しているようで、理解していないワード、“AI”。AIをビジネスに導入しようと考えても、莫大な投資だけでなく、何をAI化するか・できるか、導入後の運用などAI導入の障壁は大きいように思われる。そんなAIの壁に一石を投じるのがトルフテクノロジーズ株式会社(以下、トルフ)だ。同社は、様々な企業に実用的なAIプロダクトの提供と、技術を生かしたコンサルティングを手がけている。さらに採用に特化した自社プロダクト「トルフAI」でも注目を集めている。「AIの民主化」を目指すCEO 高橋雄介氏、COO 川原洋佑氏、CTO 細川馨氏にお話を伺った。

プロダクト思考の専門家集団
だからできる、AIの民主化

企業の事業モデルをデジタルで変革する「デジタルトランスフォーメーション(DX)」が、コロナ禍でますます加速している。リモートワークやオンライン診断、B to Bマーケティングの分野でもイノベーションが進み、特にAI(人工知能)の活用が事業発展のために必須になるだろうと予測されている。ところが、AIなどの先端ITを活用したデジタル事業をどう立ち上げるか、推進組織をどのように構築するか、莫大なコストがかかるのではないか、と多くの企業が二の足を踏んでいるのが現実だ。

AIに対する敷居は高まり、特に中小企業や飲食店などスモールビジネスを展開する事業者にとって、AIの導入・活用は難しい状況にある。そこで、誰もが気軽にAIを!と「AIの民主化」を目指すトルフが昨今注目を浴びている。社名のトルフに込めた意味をCEO 高橋氏はこう語る。

「トリュフ(弊社では「トルフ」と呼んでいます)は、美味しいのに高価でなかなか手に届きにくい食材です。AIを含むテクノロジーも同様で、開発・導入・運用のコストや専門的な知識・スキルが要求されるため、その費用を負担できる大企業以外には手の届きにくいものとなっています。弊社では、高度な専門知識やスキルを背景に、手の届きにくかったAIやテクノロジーを、飲食店や小売店、中小企業を含む多くの皆様に活用いただきたいという想いがあり、これを、“美味しいトルフをより多くの皆さんの手元に”という意味を込めて表現しています。これは尊敬する友人が同じ名前でベーカリーを作ったストーリに着想を得てつけた名前です。」

シリコンバレーで起業経験のある高橋氏を中心とした天才頭脳メンバーが集い、AIプロダクトと活用法を提供していることがトルフテクノロジーズの強みだ。

「我々の強みは、高速でAIプロダクト化を可能にするチーム力です。社内にはAIをはじめ、データ工学・データマイニング・プログラミング言語・消費者行動心理学・UXデザイン等の専門家やボットのシナリオライター等、博士号取得者が在籍しています。研究だけにとどまらず、クライアントの課題を明らかにし、解決策を導き出し、社会の中できちんと機能し役立つプロダクトに完成させることに情熱を持っています」

お客様のニーズを製品に落とし込んでプロダクトにする、起業家的なマインドを持ったメンバーだからこそ、実用的なAIプロダクトを生み出せているのだ。

「また、弊社はAIを本筋としたコンサルティングを強みとしており、多様な領域に対してAI導入をサポートできる点も特徴だと言えます。AIチャットボットの基礎技術を多様なニーズに展開することで、企業の成長を目指しています」

誰もがAI技術の中で
快適に暮らす未来のために

AIプロダクト化だけでなく、技術的な観点から経営を支援するレンタルCTO(技術支援)事業も手がける同社。何をAI化するといいか、そのためにはどのようなプロダクトが必要か、などAI専門家の視点から経営効率化のサポートを行っている。さらに「リーンスタートアップ」という開発手法を取り入れることで、本来であれば莫大にかかる初期投資費用を低コストに抑えていることも魅力だ。

リーンスタートアップとは、短期間で初期の製品を作り、実際のお客様に使っていただきながら、修正・改良を高速で行うスタートアップ手法。

クライアントからの課題やニーズを聞き、プロダクトを開発し、使いながら修正していく。二人三脚で実際にAIを活用していくことがトルフのコンサルテーション。AI導入のハードルを下げ、大企業・中小企業問わず、活用を当たり前にしていきたいと高橋氏は語る。

「AIを使って幸せな暮らしを。AIの民主化を目指し、技術先行ではなく、UXの観点で実用的なプロダクト提供を行なっていきます。あらゆる企業の課題に対して、いかに最小限のコストで最大限の価値を出せるか、知見をどれだけ生かせるか、にフォーカスしています。そのため、AIが不要なのでは?というご提案になることも多々あります。」

飲食店採用向けAIプロダクト
「Truffle AI」

「トルフ AI」は月額5,000円~30,000円で提供しており、課金額に応じて使える機能は変わる。お試しプランでは、面設設定1件につき1,000円。多様なニーズに応えている。(※販売代理店ごとにサポート内容・料金は異なる)

企業向けにAIプロダクト開発を手掛けているトルフだが、自社のプロダクト開発・提供も行っている。そのなかで、飲食業界に旋風を巻き起こしているのが、飲食店の採用に特化したAIチャットボット「トルフAI」だ。トルフAIを開発するきっかけは、近所の飲食店の店長から「店の仕事で忙しい中、面接のスケジュール調整をするのが難しい」と聞いたことだったという。飲食店のアルバイト採用フローがいたってシンプルであることもあり、開発を進め、“採用に特化した”AIチャットボットが完成した。「AIとビジネスの間に距離があるから、その距離を縮めたい」という思いがあるからこそ、「トルフAI」とのやり取りは、まるで人間とチャットしているようなスピード感と柔軟性がある。

トルフAIのサンプル画面。応募者(黄色)の内容に対し、チャットボット(グレー)が回答。「インターネットに接続していないタイミングでもbotが機能するから会話速度が早いんです。botを開いているブラウザ側で判断して会話ができるようにしています」と川原氏。

「繰り返し頻繁に発生するシンプルな作業は、人に代わってAIがやるべきだと考えています。AIが提示した選択肢に、人間ははい、いいえを選択するだけでいい。企業側は管理画面を見に行かなくても、メールで面接スケジュールを確認できます。また、応募者側は予約メールの文面に面接日時の変更、辞退など必要なリンクが全て記載されているので、ワンクリックでアクションが起こせるところが大きな特徴です」

特定の分野に特化して開発されたからこそ、管理側にとっても、使う側にとっても、ストレスのないアプリが実現された。現在では、焼肉ライクなどで知られる人気企業ダイニングイノベーション社がトルフAIを使って、寿司業態の新店舗オープニングスタッフの採用を行なっている。

現在トルフAIは、大手グルメ予約サイトを手掛ける企業をパートナーとして、販売拡大するとともに、データ拡充のフェーズにある。今後は、基盤技術であるチャットボットを採用領域以外のニーズに対してカスタマイズし、スポーツジムや医療機関等、多様な業種への展開を目指しているようだ。

「例えば会員制のパーソナルトレーナーのノウハウをAI化できると、AIという脳みそがトレーニング手法を学び取って遠隔でのトレーニング指導が可能になる。そうすれば、会員限定ではなく3億人に届けられる。さらに翻訳することで日本人以外の生徒にもノウハウを提供できます。コスト効率が上がり、ビジネス拡大も狙えるというわけです」

誰もが知らず知らずの内にAI技術の中で快適に暮らしている、そんな世界を目指し、トルフテクノロジーズは挑戦している。

関連記事を読む

(text: 小泉恵里)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー