対談 CONVERSATION

目指すはAIの民主化。低コストAIで企業を応援したい

小泉恵里

なんとなく理解しているようで、理解していないワード、“AI”。AIをビジネスに導入しようと考えても、莫大な投資だけでなく、何をAI化するか・できるか、導入後の運用などAI導入の障壁は大きいように思われる。そんなAIの壁に一石を投じるのがトルフテクノロジーズ株式会社(以下、トルフ)だ。同社は、様々な企業に実用的なAIプロダクトの提供と、技術を生かしたコンサルティングを手がけている。さらに採用に特化した自社プロダクト「トルフAI」でも注目を集めている。「AIの民主化」を目指すCEO 高橋雄介氏、COO 川原洋佑氏、CTO 細川馨氏にお話を伺った。

プロダクト思考の専門家集団
だからできる、AIの民主化

企業の事業モデルをデジタルで変革する「デジタルトランスフォーメーション(DX)」が、コロナ禍でますます加速している。リモートワークやオンライン診断、B to Bマーケティングの分野でもイノベーションが進み、特にAI(人工知能)の活用が事業発展のために必須になるだろうと予測されている。ところが、AIなどの先端ITを活用したデジタル事業をどう立ち上げるか、推進組織をどのように構築するか、莫大なコストがかかるのではないか、と多くの企業が二の足を踏んでいるのが現実だ。

AIに対する敷居は高まり、特に中小企業や飲食店などスモールビジネスを展開する事業者にとって、AIの導入・活用は難しい状況にある。そこで、誰もが気軽にAIを!と「AIの民主化」を目指すトルフが昨今注目を浴びている。社名のトルフに込めた意味をCEO 高橋氏はこう語る。

「トリュフ(弊社では「トルフ」と呼んでいます)は、美味しいのに高価でなかなか手に届きにくい食材です。AIを含むテクノロジーも同様で、開発・導入・運用のコストや専門的な知識・スキルが要求されるため、その費用を負担できる大企業以外には手の届きにくいものとなっています。弊社では、高度な専門知識やスキルを背景に、手の届きにくかったAIやテクノロジーを、飲食店や小売店、中小企業を含む多くの皆様に活用いただきたいという想いがあり、これを、“美味しいトルフをより多くの皆さんの手元に”という意味を込めて表現しています。これは尊敬する友人が同じ名前でベーカリーを作ったストーリに着想を得てつけた名前です。」

シリコンバレーで起業経験のある高橋氏を中心とした天才頭脳メンバーが集い、AIプロダクトと活用法を提供していることがトルフテクノロジーズの強みだ。

「我々の強みは、高速でAIプロダクト化を可能にするチーム力です。社内にはAIをはじめ、データ工学・データマイニング・プログラミング言語・消費者行動心理学・UXデザイン等の専門家やボットのシナリオライター等、博士号取得者が在籍しています。研究だけにとどまらず、クライアントの課題を明らかにし、解決策を導き出し、社会の中できちんと機能し役立つプロダクトに完成させることに情熱を持っています」

お客様のニーズを製品に落とし込んでプロダクトにする、起業家的なマインドを持ったメンバーだからこそ、実用的なAIプロダクトを生み出せているのだ。

「また、弊社はAIを本筋としたコンサルティングを強みとしており、多様な領域に対してAI導入をサポートできる点も特徴だと言えます。AIチャットボットの基礎技術を多様なニーズに展開することで、企業の成長を目指しています」

誰もがAI技術の中で
快適に暮らす未来のために

AIプロダクト化だけでなく、技術的な観点から経営を支援するレンタルCTO(技術支援)事業も手がける同社。何をAI化するといいか、そのためにはどのようなプロダクトが必要か、などAI専門家の視点から経営効率化のサポートを行っている。さらに「リーンスタートアップ」という開発手法を取り入れることで、本来であれば莫大にかかる初期投資費用を低コストに抑えていることも魅力だ。

リーンスタートアップとは、短期間で初期の製品を作り、実際のお客様に使っていただきながら、修正・改良を高速で行うスタートアップ手法。

クライアントからの課題やニーズを聞き、プロダクトを開発し、使いながら修正していく。二人三脚で実際にAIを活用していくことがトルフのコンサルテーション。AI導入のハードルを下げ、大企業・中小企業問わず、活用を当たり前にしていきたいと高橋氏は語る。

「AIを使って幸せな暮らしを。AIの民主化を目指し、技術先行ではなく、UXの観点で実用的なプロダクト提供を行なっていきます。あらゆる企業の課題に対して、いかに最小限のコストで最大限の価値を出せるか、知見をどれだけ生かせるか、にフォーカスしています。そのため、AIが不要なのでは?というご提案になることも多々あります。」

飲食店採用向けAIプロダクト
「Truffle AI」

「トルフ AI」は月額5,000円~30,000円で提供しており、課金額に応じて使える機能は変わる。お試しプランでは、面設設定1件につき1,000円。多様なニーズに応えている。(※販売代理店ごとにサポート内容・料金は異なる)

企業向けにAIプロダクト開発を手掛けているトルフだが、自社のプロダクト開発・提供も行っている。そのなかで、飲食業界に旋風を巻き起こしているのが、飲食店の採用に特化したAIチャットボット「トルフAI」だ。トルフAIを開発するきっかけは、近所の飲食店の店長から「店の仕事で忙しい中、面接のスケジュール調整をするのが難しい」と聞いたことだったという。飲食店のアルバイト採用フローがいたってシンプルであることもあり、開発を進め、“採用に特化した”AIチャットボットが完成した。「AIとビジネスの間に距離があるから、その距離を縮めたい」という思いがあるからこそ、「トルフAI」とのやり取りは、まるで人間とチャットしているようなスピード感と柔軟性がある。

トルフAIのサンプル画面。応募者(黄色)の内容に対し、チャットボット(グレー)が回答。「インターネットに接続していないタイミングでもbotが機能するから会話速度が早いんです。botを開いているブラウザ側で判断して会話ができるようにしています」と川原氏。

「繰り返し頻繁に発生するシンプルな作業は、人に代わってAIがやるべきだと考えています。AIが提示した選択肢に、人間ははい、いいえを選択するだけでいい。企業側は管理画面を見に行かなくても、メールで面接スケジュールを確認できます。また、応募者側は予約メールの文面に面接日時の変更、辞退など必要なリンクが全て記載されているので、ワンクリックでアクションが起こせるところが大きな特徴です」

特定の分野に特化して開発されたからこそ、管理側にとっても、使う側にとっても、ストレスのないアプリが実現された。現在では、焼肉ライクなどで知られる人気企業ダイニングイノベーション社がトルフAIを使って、寿司業態の新店舗オープニングスタッフの採用を行なっている。

現在トルフAIは、大手グルメ予約サイトを手掛ける企業をパートナーとして、販売拡大するとともに、データ拡充のフェーズにある。今後は、基盤技術であるチャットボットを採用領域以外のニーズに対してカスタマイズし、スポーツジムや医療機関等、多様な業種への展開を目指しているようだ。

「例えば会員制のパーソナルトレーナーのノウハウをAI化できると、AIという脳みそがトレーニング手法を学び取って遠隔でのトレーニング指導が可能になる。そうすれば、会員限定ではなく3億人に届けられる。さらに翻訳することで日本人以外の生徒にもノウハウを提供できます。コスト効率が上がり、ビジネス拡大も狙えるというわけです」

誰もが知らず知らずの内にAI技術の中で快適に暮らしている、そんな世界を目指し、トルフテクノロジーズは挑戦している。

関連記事を読む

(text: 小泉恵里)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

【HERO X×JETRO】都市=メトロに風況情報ソリューションを提供。メトロウェザーの「風を読む」テクノロジー

HERO X編集部

JETROが出展支援する、世界最大のテクノロジー見本市「CES」に参加した注目企業に本誌編集長・杉原行里が訪問。京都大学初のベンチャーとしてスタートし、高性能ドップラー・ライダーを開発したメトロウェザー株式会社。大気中にレーザーを照射することで、数キロ先の風向や風速を測定できるという装置で、装置自体は他社でも作られているが、今までにない距離と精度を提供するという。さらにゲリラ豪雨の予測や、ドローンの実証実験にも貢献している。ドローン技術はもちろん、都市防災にも並々ならぬ関心をもつ編集長が、同社代表取締役CEOの東邦明氏に「風を読む」技術の可能性を聞く!

ゲリラ豪雨や強風の
予測を「光」で行う

(画像元:https://www.metroweather.jp

杉原:僕がメトロウェザーさんに興味を持ったのは、もちろん技術的な面もありますが、御社のウェブサイトにも掲載されている「風を制し、空の安全を守る」という言葉がカッコいいなと思ったからです。そもそも、なぜ「風」に行き着いたのですか?

東:もともと学生の時はゲリラ豪雨の予測というか、線状降水帯の研究をずっとやっていて風とは無縁だったのですが、京大大学院のポスドクで古本(京都大学生存圏研究所助教授、メトロウェザー取締役)の元を訪れてから、風に着目するようになりました。よくよく考えてみると、ゲリラ豪雨は夏の入道雲みたいな雲が急にわいてきて雨が降る。今もそうですが、当時はレーダーで予測できるといっても、10分前が限界で、誰が見ても雲が来ているのが見える。雲が急速に集まってくる時というのは、風が集積されて上昇気流ができるから、その風をとらえるともっと早く予測できるのではないかと考えました。あとは、大学の時にもうひとつやっていた研究が、滋賀県の強風だったんです。琵琶湖の西側で山と湖が非常に接近しているところがあって、そこは貨物列車が転覆するくらいの強烈なおろし風が吹くんですね。

杉原:あの風にうまく乗れたら、鳥人間コンテストでも戻ってこられますもんね(笑)。

東:そうそう (笑)。そこで、JR西日本の湖西線の電車がしょっちゅう止まる。その風を解明してほしいということで、共同研究していく中で、「風をとらえる」ということを始めました。最初は風見鶏みたいなものを置いていたのですが、それでは全体像がわからないので、リモートセンシングで測る方法として、海外のドップラー・ライダーを取り寄せてみたんです。それまで大学ではレーダーで風をとらえていたのですが、電波の場合は、どうしても四方八方へ広がることがあって、情報がノイズだらけになってしまう。あとは電波法の規制もあって自由に出せない。ドップラー・ライダーというのは、レーダーではなく光で風をとらえる装置です。でも、琵琶湖側に海外製のドップラー・ライダーを置いてみたら、当時は1キロメートル先もとらえることができなくて。

杉原:1キロ以内といったら、体感のほうが早いですよね。

東:そうなんです。僕は全然ダメだと思っていたら、古本が「自分たちで作ればいい」と言い出したんですね。それが2014年くらいで、2015年の5月にメトロウェザーを立ち上げました。

杉原:従来のものとは全く違うドップラー・ライダーを自社で開発されたということですが、信号処理技術、解析技術などを独自で研究開発されたということでしょうか?

東:そうです。当初は開発に5年もかかるとは思っていませんでした。基本的な原理や構成はレーダーとほぼ同じですし、信号処理の技術も、京大の大型レーダーで培ってきた信号処理技術を応用すれば、さほどハードルは高くないだろうと思って作り始めたのですが、いざ作り始めると、この部品とこの部品の組み合わせはNGとか、この部品とこの部品は相性がいいとか。

杉原:それは材質的な部分ですか?

東:部品メーカー同士の相性などです。どの組み合わせがいいのかは、組み合わせてみなければ分からない部分もあり、そうこうするうちに5年かかってしまいました。幸い、駆け出しのころにNEDO(国立研究開発法人新エネルギー・産業技術総合開発機構)の補助金をいただいたり、「そういうチャレンジングなことをするのなら投資しよう」という投資家さんが現れたので、なんとか乗り切ったという感じです。

風を読む技術を
ドローン社会のインフラに

杉原:ドップラー・ライダーは10キロ圏内であれば、円としてセンシングできるんですか?

東:半径10キロ、条件がよければ15キロくらいの範囲をスキャンできます。もちろん、鏡を使ってレーザーをいろいろな方向に向けて円形にスキャンすることもできますし、斜め上に照射して三次元でとったりすることもできます。

杉原:やはり高い所に設置したほうがいいのでしょうか?

東:はい。見通しがいいところがいいので、おのずと鉄塔の上などがベストになります。

杉原:今、京大の中で研究しているということですが、仮に京都全域をドップラー・ライダーでセンシングするとなると、およそ何台くらい必要ですか?

東:京都盆地の中だったら、4、5台あればいけると思います。ざっくりとですが。

杉原:え? すごい。想像以上に少なかったです。でも、高い建物というだけではなく、障害物というのがキーですよね。これ、機材の大きさはどのくらいですか?

東:去年の3月にローンチしたタイプでだいたい1立方メートルくらい、重量がかなりあって350キロくらいです。ただ、今年の春には一辺が65センチ四方で重さが130キロくらいのものができます。

杉原:すごい。急に開発スピードが上がっていますね。いったん完成した後のスピードは、「今までなんだったんだ?」と思うくらいですよね。僕も開発しているので、わかります。ドップラー・ライダーはどういう場所で活用することになりますか? 企業のビルに業務委託の形で置かせてもらうのか、それとも公共の場所と手を組むのか。

東:最終的には、ドローンがこれからたくさん飛んでいく世界になった時のインフラにしたいと思っています。例えば、電柱や携帯の基地局に置いていきたいのですが、いきなりそこにはいけないので、今は協力してくださるビルオーナーのもとで、ビルの屋上などに置いているケースと、業務提携契約を結んでいるNTTコミュニケーションズ社の遊休鉄塔などを使わせてもらっています。

杉原:このドップラー・ライダーにはセンシングやアルゴリズムなど御社独自の技術があると思うのですが、出口がとても豊かだなと思います。いま東さんがおっしゃられていたドローン社会の到来もそうだと思うのですが、「風を制す」というところの中で、わかりやすいものでは、日本で社会課題になっている都市防災がありますよね。例えば御社のテクロノジーを使ったら、僕らが今こうむっている災害を防げるということはありますか?

東:防災の観点では、やはりゲリラ豪雨の予測ですね。東京の都市には地下空間がいっぱいあります。よく地下鉄の入り口に止水板が置いてありますが、ああいうものを設置するのに10分前予報だと間に合いません。これが30分前だと、なんとか間に合います。そういう形でドップラー・ライダーを使って浸水を防ぐ、なんらかの対策がとれる、というケースはよくお伺いします。

杉原:ゲリラ豪雨の特徴をもった特殊な風の集積ができた時に、それを感知して「あと30分後にゲリラ豪雨が来る可能性は何%くらいです」みたいな予報になるのでしょうか?

東:たぶん、そうなると思います。

杉原:うわあ、すごい。めちゃくちゃ傘が売れそうですね。

都市部で必要になってくる風の情報

杉原:あとはドローンのための風予測ですよね。今は長崎の五島列島など、人のいない場所で実証実験をやっていますが、都市部で飛ばす場合は、風が一番重要な情報といっても過言ではないと思います。

東:おっしゃる通りで、ANAの五島列島での実証実験で弊社のドップラー・ライダーが使用されたのですが、海の上は比較的乱れが少ないんです。都市に入って来た瞬間に、ビルや建物の影響がすごく出てくるので、風の情報が非常に重要になってきます。

杉原:ドローンに関しては、リアルタイムで24時間データを供給しながら、「今、どのルートがいいよ」と提案していくイメージですか?

東:そうですね。建物の情報はそんなに変わるものではないですが、唯一風の情報だけが時々刻々と変わっていくので。24時間365日の観測情報をドローンのオペレーターに提供していく形になると思います。

杉原:ということは、完全にオートメーション化していかないと、遅延が発生してしまうと、情報が全く違うものになってしまうということですね。

東:ええ。我々も今はほぼリアルタイムで風の情報を提供できるようになっていますが、「今の風」をいかに届けるかというのがポイントです。

杉原:具体的にはどのくらいの時期に実用化をめざしていますか?

東:ドップラー・ライダー自体はお客さんのもとに届いている状況で、サービスは今年中にはスタートしたいと思っています。今はユーザーインターフェース部分の開発を急いでいます。

杉原:それはお客さんによってユーザーインターフェースを変えていくということですか?

東:変えていかないといけない。基盤のところは変わらないのですが、どちらかというとドップラー・ライダーを売るというよりは情報を売るイメージです。だんだんITベンチャーチックな感じになっていくと思います。

ポスドクから
ベンチャー起業の前例となりたい

創業メンバーの四人で力と知恵を持ち寄り次のステージを目指すメトロウェザー。(画像元:https://www.metroweather.jp

杉原:最後に今、日本はポスドク問題のようなものも言われていて、研究室で若手が席を確保するのは至難の技だとさえ言われます。その中で、ポスドクの期間終了時に研究職一本で行くのではなく、起業という選択もあるのではないかということを、御社の場合は示されているのかなと感じました。

東:おっしゃる通りで、ポスドクでよく言われるのが「次がない」ということですが、起業する道もあることを示したいというのは、初期のモチベーションとしてはありました。ディープテック系で成功した事例があまりないので、その成功事例の一つになれればいいなと思います。

杉原:僕もすごく興味があります。今日は貴重なお時間をありがとうございました。

東 邦昭(ひがし・くにあき)
メトロウェザー株式会社代表取締役CEO。2009年に京都大学のポスドクに着任後、大気レーダーを用いた乱気流検出・予測技術の開発・高分解能気象予測シミュレーションの開発を行う。民間気象予報会社において2年間の環境アセスメントの実務経験も持つ。2014年にポスドクを辞めた後、1年間の起業準備期間を経て、2015年に古本氏とともに京都大学発スタートアップとしてメトロウェザーを設立。代表取締役。神戸大学博士(理学)・気象予報士。

(トップ画像:https://www.metroweather.jp

(text: HERO X編集部)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー