対談 CONVERSATION

根性論も感情論もいらない。センシングがもたらす、ハラスメントなきスポーツの未来 後編

長谷川茂雄

近年、大きな社会問題になっている数々のハラスメント。とりわけスポーツ界では、監督やコーチと選手間の異常な主従関係や、暴力的な行為が問題視されることが多い。度々メディアでも報じられるこうした歪みの裏側には、記録やパフォーマンスの向上を目指す指導者側の感情的な空回りや、埃をかぶった根性論などが横たわっている。スポーツ科学とセンシングテクノロジーは、それをポジティブなコミュニケーションへと変える。第一人者である長谷川 裕氏をお招きした編集長対談。前編ではすでにヨーロッパのサッカーチームではこうしたスポーツの科学的分析が主流になりつつある話を伺ったのだが、日本のスポーツ界にもやっとその風が吹き始めているようだ。データを基にした指導で選手はどう変わるのか。未来のスポーツ指導について語り尽くしていただいた。

データ化すると選手の能力と課題が一目瞭然

杉原「具体的なトレーニングの測定についてもお聞きしたいのですが、長谷川さんは、いま何を一番重視されていますか?」

長谷川「ひとつは GPS ですね。GPS はこれからどんどん広まっていくと思います。トレーニングも分析できるし、試合も分析できる。それからいわゆるスプリントや持久力、それらを客観化することも可能です」

杉原「GPS は、やはり大切なんですね」

長谷川「はい。センシングという言い方をすると、最先端と思われるかもしれませんが、平たく言えばデータです。それをどう使っていくのかということなんです。GPS 同様大切なのは、筋力や筋パワーのデータですね。筋パワーというのは、筋力とちょっと違います。みんなそこをごっちゃにしていますが、質量の単位はkg、筋力の単位はN(ニュートン)、筋パワーの単位はW(ワット)というように、それぞれ別のものです。多くのトレーニングの指導者は N や W という単位を使わないばかりか、知らない人もたくさんいます。あとは心拍数や血中乳酸値など、基本的なものを計測することは難しくありません」

杉原「最近は、Jリーグでも選手の走行距離のデータなどは、よく聞かれるようになりましたよね」

長谷川「そうですね。総走行距離は、選手の平均を割り出すと1試合に10〜11km程度になります。あと大切なのは、スプリントの回数です。スプリントをどんな数値に設定するかも重要ですが、時速24〜25km というのが一般的。それを試合中に何回記録したかを計測します。総走行距離の中で早いスピードで走った割合や、加速度と減速度からはスピードの変化が読み取れますね」

杉原「その測定を、細かく解析するのは大変な作業ですね」

長谷川「そうですね。でも、こういったデータ測定を導入すると、試合を見ていた印象と実際の数値が違っていることが多いので興味深いですよ。すごく走っていたと思う選手よりも、実は全然違う選手が長い距離を走っていたり、総走行距離が短くてもスプリント回数がダントツに高い選手がいたり。そういうデータが見えてくると、もっと守備をしっかりするべきだとか、スプリント回数を増やすべきだとか、選手一人ひとりの課題も見えてくるわけです」

杉原「確かに、そうやって選手のパフォーマンスを数値的に可視化することは、新たなコミュニケーションツールになりますね」

感情論ではない選手の本当の適正を見出す

長谷川「そうです。熊本の八代市に、秀岳館高校という学校があります。熊本といえば大津高校というサッカーの名門校がありますが、そこになかなかに勝てないため、センシングなどのテクノロジーを導入したんですね。そうしたら、選手の内発的な動機付けができるようになって、コーチのほうも選手のいいところや課題が見つけられるようになったそうです」

杉原「これから大きな効果が期待できそうですね」

長谷川「センシングを導入して、試合中のスプリント回数や加速減速などの数値を計測しているのですが、参考としてプロはこのぐらいの数値だというデータを紅白戦の前に見せたところ、選手たちはその日の試合が終わった後に、クタクタになって倒れて笑っていたというんですね。指導者は、これまで紅白戦でそこまで力を出し切った選手の姿を見たことがないと言っていました。選手もデータで見せてあげると、目標が見えやすいんです。次の段階は、一人ひとりの能力に合わせてどういうトレーニングをするか? それをプランニングすることですね」

杉原「なるほど。計測して解析して、プランを立てるということですね。では、どのポジションが向いているというような適正は、どうやって見極めていくのですか?」

長谷川「例えばスプリントスピードを静止状態から30mまで測った場合、最初の5m、10mを何秒で走っているか? そして、最後の10mを時速何㎞で走っているのか? そういうところから適正が見えてきます。最初の5mで1秒切れる人は、Jリーグやラグビーの代表クラスで1人いるかいないか。でも最初が遅くても、最後の10mで時速32km出せるのであれば、世界的に見てもトップクラスですから、それを活かせばいいんですよ。そうやって、一瞬のスピードを求められるフォーワードがいいとか、ある程度の距離を早く走れると有利になる中盤がいいとか、わかってくるわけですね」

杉原「自分がどのポジションに向いているのか、感情論ではなく教えてもらえるのは、選手も嬉しいかもしれないですね」

長谷川「そうなんです。それに指導者側もセンシングの数値をもとに、選手の能力を活かした戦術も浮かんでくるようになる。データがわかれば、ぐっと科学的になりますし、合理的なプランが立てられるんです」

トレーニングでは最大の力を
何回繰り返すかが重要

杉原「センシングというと科学的な印象ですが、選手一人ひとりを計測するとか、フェイス・トゥ・フェイスでコミュニケーションを取るという部分はアナログですよね。そういう合理的なところと非合理的なところの良さを活かし協業することで、よりコーチングもスポーツも最大化していけますよね」

長谷川「おっしゃるとおりですね。そうやって、選手も指導者も前に進んでいけるということです」

杉原「自分はパラリンピックの競技プロダクトに関わっていますが、測定というのは少しずつわかってきたんですけど、解析に関してはまだまだ発展途上です。例えば、車いすレースの場合、スタートの5mを早くすることが大事なのか、それとも40mでマックスを出すのが重要なのか? そういうことをいろいろと模索しています。でもデータを可視化すると、感情論抜きに選手とコミュニケーションが取れるので、やりやすいです」

長谷川「そうですね。指導者の経験や感覚に委ねていたこれまでの指導方法は、才能のある選手を潰してしまっていたケースもありますから。それは、先ほどお話しした秀岳館高校サッカー部の先生も実感されていて、センシングによってこれまで気づかなかった選手の才能を開花できそうで、すごく嬉しいと言っていました。そうなると、もう暴力的な指導をしたり、無駄に長時間練習をする必要もないわけですね」

杉原「指導者も、センシングが自分を変えるきっかけになりますね。僕らは、いまレース用の車いすを伊藤智也選手と一緒に開発していますが、東京2020のとき彼は58歳になるんです。それでどんな結果が出せるのか、社会的にも注目されると思いますから、そういう新しいテクノロジーや考え方を付与して、どんどん進んでいきたいですね」

長谷川「いまはもう、歯を食いしばって辛い練習をやれば結果がついてくると思われていた時代とは違うんです。いかに高速で大きな力を爆発的に短時間で出すか。それは、主観ではわからない。トレーニングで大事なのは、疲れるのが目的ではなくて、最大の力を出すことを何回繰り返すか。それを計測しながら効果的にやるべきです」

杉原「そうですね。能力が可視化できれば、そういうトレーニングができますから効率もいいですね」

長谷川「有名な話ですが、何かのトレーニングを7割ぐらいの力で10回3セットやったグループと、100%の力で3回10セットやったグループでは、同じ回数ですが、明らかに後者の方が爆発的な筋力が付くんです。そうやって効果的なトレーニングができれば、より合理化していけます」

杉原「そういうことですね。長谷川さんがやられているセンシングの技術があれば、選手も自分の選択肢が明確にわかりますし、それを組み立てるプランも立てやすくなる。そういう材料を提供されているというのは、素晴らしいです。でも今日のお話しを聞いて、自分もジム通いでやっているトレーニングを見直そうと思いました。まずは、真っ先に回数を減らそうと思います(笑)」

前編はこちら

長谷川 裕(はせがわ・ひろし)
1956年京都府生まれ。龍谷大学経営学部教授(スポーツサイエンスコース担当)。日本トレーニング指導者協会(JATI)理事。エスアンドシー株式会社代表。筑波大学体育専門学群卒業、広島大学大学院教育学研究科博士課程前期終了。龍谷大学サッカー部部長・監督、ペンシルバニア州立大学客員研究員兼男子サッカーチームコンディションコーチ、名古屋グランパスエイトコンディショニングアドバイザー等を経て、スポーツセンシング技術等を利用した科学的トレーニング理論の実践的研究を続ける。著者は『アスリートとして知っておきたいスポーツ動作と体のしくみ』、『サッカー選手として知っておきたい身体の仕組み・動作・トレーニング』ほか多数。

(text: 長谷川茂雄)

(photo: 河村香奈子)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

“アフターコロナ”でどう変わる⁉ 情報学から考える モビリティの現在地とこれから

長谷川茂雄

コロナ禍は、果たして世界の秩序や価値観を大きく変えたのだろうか? その答えは現時点では明言できないが、間違いなく人類はこの“わざわい”の先にある世界を具体的にイメージし始めている。今回の特集のテーマであるモビリティの在り方もそのひとつだ。移動は人類にとっての根源的な行為であるし、そのためのツールであるモビリティは、常にライフスタイルと直結している。ゆえに「アフターコロナ」は、それに見合った新たなモビリティが求められるはずだ。その最適解を導き出すための冷静な視点とガイドラインを、日本におけるコンピューターサイエンス研究の第一人者、佐藤一郎氏に伺った。

いまはモビリティの
定義が変わる転換期

近年、AIや自動運転といった技術面での進歩に注目が集まり、“快適な移動”をもたらすツールであるモビリティに対しては、期待値がかなり高まっていた。

ところが、誰も予想できなかった新型コロナウイルスの感染拡大を受け、その描いた未来をデザインしなおす必要が出てきた。

まずは、これから移動そのものはどうなるのかを捉える必要があるが、そもそも移動には、人と物(物流)の2種がある。両者はどのように変化したのだろうか?

「新型コロナウイルスで、移動というものはかなり制約される状況になりましたし、人の移動に関しては、いかに移動そのものを“させない”かを考える必要も出てきました。これからは、その2つのテーマが並存して進んでいくはずです。モビリティの定義そのものがちょうど変わる、いわば変わり目にいると言えます」

オンラインによる働き方もある程度浸透してきた現在、確かに人は積極的に“移動しない”ようになった。それゆえ、モビリティを使った人の移動を佐藤氏は、「物の移動と分けて考えられなくなった」という。では、物の移動はどうなるのか?

「人の移動が減る分、逆に物の移動は増えます。いわゆるECのような形で多くの人が物を買い、宅配便は増えています。巷で話題になっているウーバーイーツのように、専門物流業者以外に物流を担う人もたくさん出てきています。ITが人々の時間を断片化してきており、普段は別の仕事をしていて、空いた時間に配達の仕事をする人はこれからも増えていくはずで、断片化された空き時間の使い方が、様々な局面で重要となります。あとは、数年おきに注目される“共同物流”もクローズアップされる可能性はあります」

「モビリティの捉え方は、コロナ禍によって大きく変わった」と語る佐藤氏。

共同物流とは、複数の企業が同一のインフラを活用して保管や配送などの作業を行うことだが、コストが削減できる反面、他者に様々な情報が漏れる危険性があったり、業者ごとの細かな要望を共有できないなど問題点も多く、これまでは、長年成功している事例が少ない。

「これからは、ITを駆使して諸問題を解決しながら、コストカットに加えて、環境負荷を軽減する手段として共同物流のメリットを活かそうという流れは出てくるかもしれません。加えて、共同物流は倉庫と小売間といった比較的中距離の物流ですが、例えば東京と大阪間というような長距離でどれだけ効率的に物流を行うか? という課題もあります。トラックだけではなく、鉄道や船など複数の移動手段を使う“モーダルシフト”も、これからより注目される傾向にあります」

東京にはシェアリングと
公共交通の融合型がマッチする

そんな現状を踏まえたうえで、より人の生活に根ざしたモビリティの在り方も考えてみたい。例えば、現在MaaS(マース:Mobility as a Service)という概念がヨーロッパを中心に浸透してきている。マイカー以外のあらゆるモビリティをITでシームレスに結びつけるサービスのことだが、こういう動きは今後加速するといわれる。

例えば、コロナ禍以後、電動自転車などの需要が高まっているという話はよく聞く。身近なところでいえば、シェアサイクルなどのサービスは、日本でもさらに広がっていく可能性はあるのだろうか?

「日本の場合は、東京を見ればわかりますが、基本的に住宅とオフィスが混在していません。海外の都市のようにシェアリング自転車や電動スクーターが浸透するのは難しくなります。シェアリング自転車を例に取ると、東京の場合、朝は多くの人がやや郊外の住宅から最寄駅まで乗っていき、帰りは最寄駅から住宅へと向かいます。そうなると自転車の需要が時間に応じて偏ります。この結果、自転車の再配置の問題が出てきます。

シェアリング自転車置き場には、自転車がなくなってもいけないし、満杯になってもいけませんから、運用事業者はトラックを使って置き場から置き場へ再配置をしなければなりません。表に現れませんが、そこに一番コストがかかるんです。世界の都市で見れば、例えばパリは、住宅とオフィスが混在していますからシェアサイクルは古くから浸透しています。海外の都市におけるビジネスモデルが東京で使えるかというと、そうではないのです」

「世界の別の都市で活用されているモビリティのサービスやシステムが、そのまま日本で適用できるわけではない」。佐藤氏いわく「東京は、公共とシェアの融合を進めるのには有利な街」。

シェアリングモビリティは確かに便利ではあるが、街のスタイルによって向き不向きがあるというのは頷ける。では、日本では、シェアリングの乗り物はまったく向かないか、というとそうではない。公共交通とシェアリングモビリティの“融合型”がマッチするという。

「例えば住宅地ではなく、オフィス街の地下鉄の出入り口の近くに、シェアリング自転車の置き場を作る。そうすると地下鉄を降りたら自転車がすぐ利用できて重宝です。住宅地よりは実現性が高い。その背景は、オフィス街は人々が行き交うので時間に応じた偏りが少ないからです。また、地下鉄駅間は距離が短いことを考慮すると、例えば駅の自転車置き場に自転車が少ない場合は、自転車が残っている隣接する駅まで地下鉄で移動して、そこで自転車を借りるという手法も、地下鉄の事業者と連携すれば可能なはずです。海外でも公共交通とシェアリング自転車の連携は進んでいるとはいえず、東京で先行してみる価値はあるでしょう」

シェアリングと公共のハイブリッドというモビリティとの付き合い方。確かに住宅地とオフィス街が別れていることが多い日本では、それがスマートにフィットしそうだ。ただ、その場合はシェアリングの事業者と公共交通の距離感を今よりも縮めていく必要がある。では、AIに関してはどうだろうか?

ハイブリッド型のシステムを構築したうえで、オフィス街で使うモビリティにAIを搭載して、利便性を上げられないものか?

「モビリティそのものにAIを搭載して、音声で指示を与えて何かをしてもらうとか、自動運転の自転車が駅まで迎えに来てくれるとか、現段階ではそういったパフォーマンスの必要性はあまりない気がします。AIに関しては、ユーザーの意図を事前に予測して、使う自転車を予約してくれるとか、裏方的にユーザーの利便性を高めてくれるような使い方のほうが現実的ではないでしょうか」

自転車や電動スクーターそのもののインテリジェンスを高めるよりも、AIは、“先回り”的なサポート役に使ったほうがより有意義なようだ。さらに自動車においては、安全性のアップデートに使われている。

自動車はモビリティという
システムの一部になる

「これからは、自動車にカメラだけではなく、レーザーを使ったセンサーなどが搭載されるはず。そうなると障害物の発見能力が格段に上がりますから、事故を未然に防ぐ能力も高まります。

さらに、現状の自動運転は、自動車にたくさんセンサーを付けてコンピュータで処理をしていますが、自動車から見える視点には限界がありますから、他の車のカメラを含むセンサー情報も共有できれば、ドライバーの視線を超える視野を得ることになりますし、走る道路そのものにセンサーをつけて情報を共有できれば、さらに安全性は高まります。もはや自動車という閉じた単位ではなくて、それこそモビリティというひとつのシステムの一部が自動車という考え方に変わっていくのだと思います」

「モビリティという大きなシステムが作られるには、難題が多々ある」。それをクリアすることで、人間の生活はさらに大きく変わるのかもしれない。

他のモビリティや道路と連携して情報を共有しながら走るモビリティ。それが未来のモビリティの一つの在り方かもしれない。ただそこにももちろん課題がある。

「街や道路にセンサーを付けるには、それなりのコストがかかります。車の運転のためだけにセンサーを使うのではなく、社会的に他の用途でも使えるようにしなければ、その問題はクリアできません。そしてもっと難しいのは、新規の街ではなく、既存の街の方です。レガシーな場所をどうやってインテリジェント化するのか、ということです。

例えば過去に博物館のスマート化に関する実証実験を、上野の国立科学博物館などでやらせていただきましたが、それは企画展ではなく、既存の展示空間のスマート化でしたが、展示の邪魔をしないことが難題でした。、ショッピングモールなどで景観を損ねずに電源などを確保し、センサーを設置して、コンピュータで制御できるシステムを組み込むことも同じような難しさがあります。複雑に入り組んだ街もそうですし、そもそもそういった場所で、自動運転が可能なのか?という課題もあります」

既存の街や建物、インフラに新しいモビリティというシステムを組み込むことが難しければ、まだ未発達の地域を実験都市的に作り上げるというのも考えられなくはない。

「確かに実験都市というのは、新たなモビリティシステムを作っていくには好都合かもしれません。ただ、そこで得た知見が、既存の街でも応用できるかというと、それは違う部分もあります。また既存の街に関しても、東京などの大都会は複雑すぎます。今後はモビリティの概念が変わったときに都市や街に求められる大きさが違ってくるはず。新しいモビリティを活かすことで、新たな発展を遂げる地域や街が地方から出てくる可能性は、大いにあるのではないでしょうか」

(さとう・いちろう)
国立情報学研究所(NII)・情報社会相関研究系教授。慶應義塾大学理工学部電気工学科卒業。慶應義塾大学大学院理工学研究科計算機科学専攻博士課程修了。博士(工学)。お茶の水女子大学理学部情報学科助教授、国立情報学研究所助教授等を経て、2006年より現職。ほかにランク・ゼロックス客員研究員(1994〜1995年)、科学技術振興事業団さきがけ21研究員(1999〜2002年)等を務める。仮面ライダーゼロワンのAI技術アドバイザー(2019年)としても知られる。

(text: 長谷川茂雄)

(photo: 壬生真理子)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー