対談 CONVERSATION

根性論も感情論もいらない。センシングがもたらす、ハラスメントなきスポーツの未来 前編

長谷川茂雄

近年、大きな社会問題になっている数々のハラスメント。とりわけスポーツ界では、監督やコーチと選手間の異常な主従関係や、暴力的な行為が問題視されることが多い。度々メディアでも報じられるこうした歪みの裏側には、記録やパフォーマンスの向上を目指す指導者側の感情的な空回りや、埃をかぶった根性論などが横たわっている。スポーツ科学とセンシングテクノロジーは、それをポジティブなコミュニケーションへと変える。第一人者である長谷川 裕氏をお招きし、編集長・杉原と最新のスポーツ指導の在り方、そして未来について語り尽くしていただいた。

スポーツに直接役立つ科学技術の追求

杉原「まず、スポーツ科学、そしてセンシングというものは、大きく言うとどういうものなのか、簡単にお聞きしたいのですが」

長谷川「スポーツ科学と一口に言っても、細かくはスポーツサイエンスとエクササイズサイエンスという2つがあります。例えば、マラソンランナーがランニングマシンの上で走っている時に呼気を計測しているとしたら、スポーツサイエンティストとエクササイズサイエンティストは、各々違うことをやっているんですよ」

杉原「なかなか違いが難しいですね(笑)」

長谷川「簡単にいうと、スポーツのためにトレーニング技術を開発したり、選手の問題点を発見したり、怪我しない方法を考えたり……、パフォーマンスを向上するための方法を見つけるために、科学的な手法や基礎科学を使っていくのがスポーツサイエンス。そのために筋力や心拍数のみならず、事細かなデータを計測するのがセンシングという技術です。逆にスポーツを使って、身体運動や健康に繋がるような人間のなんらかのしくみを発見するとか、メカニズムがどうなっているのかを調べるのが運動科学、すなわちエクササイズサイエンス。僕自身は、スポーツサイエンティストでありたいと思っています」

杉原「なるほど、長谷川さんは、スポーツに直接役立つ科学的な技術やしくみを研究されているということですね。世間一般が対象ではなく、スポーツに特化した世界がフィールドであると」

長谷川「そうです。でもスポーツに特化した研究というのは、ごく一部のエリート選手のためのものではないか? とよく言われるのですが、私がやっている研究は、一般の方の健康にも役立つんですよ」

杉原「世間一般にも役立つか否かで、正直、大学の研究費も変わってきそうですよね(笑)」

長谷川「確かにそれはあります。かつてアメリカでは、シューズでもギアでも、開発するとなれば、大きな企業から巨額の研究費が調達できたのですが、各々の企業は自分たちで研究所を持つようになりましたから、大学の研究所には、お金が回らなくなってしまいました。製薬会社や医療機関は、今でも肥満対策や高齢者の転倒防止、安全な子供の食事、そういうものに対しては研究費を出してくれますが、それではスポーツの研究はできませんよね」

杉原「そうなると厳しいですね」

日本にスポーツサイエンスは根付いていない?

長谷川「でもヨーロッパのスポーツ科学は、そうではありません。いかにこのチームを勝たせるか? 端的にそういう研究をしています。プロスポーツのチームには研究所があるのが普通です。サッカーでいえば、マンチェスター・ユナイテッドも、チェルシーも、バルサも、研究所では10人以上の専門職がスポーツサイエンスを研究しています。アメリカには、それがないんですよ」

杉原「それはイギリスが中心ですか? それともヨーロッパ全体?」

長谷川「ヨーロッパの国々は、どこもそういう環境が整っていますよ。あとはオセアニアですかね」

杉原「ちなみに日本はどうなんですか?」

長谷川「日本は、そういうことをしているプロスポーツのチームはありません。自分がアドバイザーとして携わったJリーグの(名古屋)グランパスは、2004〜2008年頃にスポーツサイエンスを選手育成に導入しようとしていました。でも残念ながらそのプランは、すぐに変更されましたね」

杉原「そうなんですね。確かにヨーロッパと日本では、スポーツ文化の根付き方も違いますし、スポーツ自体の熱狂度も違います。科学を積極的に使っていこうという動きは、まだ日本には根付きにくいのかもしれません」

長谷川「そうだと思います。これはヨーロッパだけに限らないのですが、スポーツサイエンスが進んでいる地域では、サッカーの試合全体を、スタジアムに設置した8台ぐらいのカメラでカバーして、どのプレーも必ず2台以上のカメラで記録するプロゾーンというシステムがあります。それで計測したデータは、俯瞰で見たアニメーションにして、選手の能力を約4000項目も分析できるんです。自分はそのシステムに魅せられて、イギリスのリーズまで行って交渉して、日本で会社を作って広めようとしました」

杉原「それは画期的なシステムですね」

長谷川「それでサッカーの日本代表にも提案をしました。でも、当時の監督には、“こんなものに頼っている指導者はダメだ”とはっきり言われましたよ。そこで自分も“では、なぜプレミアリーグの全チームがこれを導入しているのですか?” と応戦したのですが、“向こうの選手はこういうものがないと、いうことを聞かないからだろ”と、突き返されました(笑)」

杉原「もう、それは論点が違いますね」

長谷川「そうなんです。日本では、まだまだ監督の存在は絶対で、選手は監督にモノをいうのはおかしいという風潮が根深い。でも、ヨーロッパでもアメリカでも、選手は監督にいろいろと聞いてきます。そういうコミュニケーションを取るときに、感覚論で曖昧な答えをしても選手は納得しませんから、いろいろなセンシングのデータを見せる必要があるんです」

感覚を可視化すれば
すべてがわかりやすくなる

杉原「自分もレース用車いすの開発をしていますが、やはり感覚で話しをされると同じ土俵で話すのが大変。感覚とは、毎日違うものだから難しい。だから感覚を出来る限り可視化して開発していく必要があるといつも感じています」

長谷川「可視化したデータを重視するというのは、スポーツサイエンスと一緒ですね」

杉原「例えば、一緒に開発をしているアスリートが、座っている車いすの“ここが硬い”、“ここがやりにくい”と言ったら、まずスタッフはそれを反映させようとする。でも自分は止めるんです。なぜなら、それって感覚だから。感覚ほど曖昧なものはない。だから計測をして、硬いと感じる原因を探る必要があるんです」

長谷川「確かにそうですよね。本来、データで判断すべきものってことですね」

杉原「はい。そこで僕たちは、モーションキャプチャーや加速度センサー、触覚センサーなどいろいろ使って計測して、アスリートの違和感を可視化するんです。そうすると、“結局、あなたが言ってたのは、このことか!”と、初めてみんなで納得できるようになる」

車いすの開発も、センシングと同様に、計測と可視化がカギを握る。

長谷川「そうそう、そういうことです。それだと選手に問題点がちゃんと伝わりますよね。データを解析して、ノウハウにしていくことも大切ですし。トレーニングも感覚でやっていくと、わかったつもり、できたつもりになる。それが一番よくないです」

杉原「海外のサッカーだと、コーチやマネージャーが、サッカー経験者じゃないケースも多々ありますよね。日本ではまだ少ない気がします。経験の有無だけじゃなくて、指導者は解析がどれだけできるか、それを利用してどれだけいい戦略が練れるのか、そういうところも評価されるべきだと思うんです」

長谷川「ある競技のコーチやスタッフが、その競技の経験者ではない場合、その人が選手から信頼されたり慕われたりすると、その畑で育った指導者は、ものすごく毛嫌いしますよね」

杉原「そうですよね。あとセンシングで選手の状態を常にデータ化しておけば、怪我をしたときにも、壊した身体の状態を過去のデータと照らし合わせられますよね。カルテ共有ができれば、対処も早くなるはずです」

長谷川「確かにそうです。プレミアリーグでも、選手が移籍をしたら、それまでどんなトレーニングをしていたのか、怪我や筋力の状況、スプリントやパワーなどのデータを受け継ぐのが普通です。そうやって選手個々の健康を守って、リーグ全体のレベルを引き上げているわけですよ」

杉原「プレミア全体のレベルが上がったのは、センシングやデータ解析などの技術が反映しているからかもしれないですね。ただ、僕が好きなアーセナルは、いつも怪我人が多いですが、スポーツサイエンスのレベルが低いんですかね(笑)」

長谷川「いやいや、アーセナルの研究レベルは、かなり高いはずですよ(笑)」

後編へつづく

長谷川 裕(はせがわ・ひろし)
1956年京都府生まれ。龍谷大学経営学部教授(スポーツサイエンスコース担当)。日本トレーニング指導者協会(JATI)理事。スポーツパフォーマンス分析協会代表理事。エスアンドシー株式会社代表。筑波大学体育専門学群卒業、広島大学大学院教育学研究科博士課程前期終了。龍谷大学サッカー部部長・監督、ペンシルバニア州立大学客員研究員兼男子サッカーチームコンディションコーチ、名古屋グランパスエイトコンディショニングアドバイザー等を経て、スポーツセンシング技術等を利用した科学的トレーニング理論の実践的研究を続ける。著者は『アスリートとして知っておきたいスポーツ動作と体のしくみ』、『サッカー選手として知っておきたい身体の仕組み・動作・トレーニング』ほか多数。

(text: 長谷川茂雄)

(photo: 河村香奈子)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

Laboro.AI 椎橋徹夫と語る AIが引き出す新しいバリュー データ統合ビジネスで見えてくる日本の未来

吉田直子

現在はAIの第三次ブームといわれている。機械のスペックが上がり、膨大なデータを処理できるようになったことで、いわゆるディープラーニングが可能になり、ビジネスの様々なシーンに活用されるようになった。しかし、AIが何を得意とし、実際にAIを使ってどんなことができるのかは一般にはあまり知られていない。AIを活用したオーダーメイド型のソリューション開発やコンサルティングを提供する株式会社 Laboro.AIのCEO・椎橋徹夫氏に、編集長・杉原行里がAIビジネスの可能性を聞く!

AIは人間の右脳的な働きを実現できる

杉原:僕はその分野にいるのでそう感じてはいないのですが、一般の方はAIを神格化している部分があると思います。そもそも“AIはなんでもできるのか?問題 ”というのがあると思うのですが、そのあたりを教えていただけますでしょうか?

椎橋:AI万能論に対してよく言うのは、まず「AIは基本的にはソフトウェアです」ということです。ただ、今までのソフトウェアやITシステムとは少し種類が違うことができるようになっています。今までのソフトウェアはロジカルな処理を正確に速くやることが得意でした。一方で直感的な処理が結構難しかったんです。

例えば、画像を見て、それが犬か、猫かを分類するみたいなことは、明文化できない直感的な処理が人間の脳の中で起こっています。そういう直感的な処理は今までのソフトウェアでは全くできませんでした。でも、AIはそれができるようになった。人間のように賢くて難しいことができるというより、人はわりと当たり前にやっているけれども、従来ならプログラムやルールに落とし込みきれなかった処理ができるようになったソフトウェアだと考えています。今までのソフトウェアが左脳的なものだったのに対して、AIは右脳的な処理ができるようになったと言ってもいいと思います。膨大なデータから自動的に特徴を見い出して、それに沿って具体的な認識や予測ができるようになりました。ですから、AIという言葉は「データに基づいた直感的な処理ができるソフトウェア」や、「認識や予測のアルゴリズム」という捉え方をするのが、現時点では実態に近い説明ではないでしょうか。

杉原:もともと、椎橋さんは東大の松尾研究室にも関わられていたということなので、その分野のエキスパートだと思うのですが、僕は、AIが介在することによって、今までバリューとしてとらえていなかった一連の行動や、価値を見出せていなかったデータを、価値あるものに置換できる未来を期待しているのですが。

椎橋:はい。まさにそうですね。

杉原:ヘルスケアの部門はそれが顕著だと思います。御社や椎橋さんの中で、今後こういう未来が来そうだという予測はありますか?

椎橋:はい。実はヘルスケア、メディカルの領域はひとつの重点領域として考えています。まさに、AIのイノベーションというのは、今までは価値に変換できなかった細かいデータを、AIというアルゴリズムを通して効率よく価値(バリュー)に変換できることです。でも、その中でまずみなさんがやるのは、とりあえず持っているデータの価値を引き出すためのAIを開発することなんです。

一方で20〜30年後を考えると、そういうタイプの取り組みの価値は、むしろ小さくなると考えています。より大きいのはA社、B社、C社、それぞれが持っている断片的なデータをきちんと組み合わせてAIのアルゴリズムを通すと、全員にとってかなり大きな価値を生み出すという流れです。今、我々は様々な領域でクライアントと1対1でAIのスキームを作っていますが、この先は複数のデータをつなげてAIに入れて価値を引き出すということも視野に入れていく必要性があるなと感じています。

杉原:具体的な例はありますか?

椎橋:はい、そうですね、例えば、今、健康診断のデータは保険組合が、病院の診断データは病院が、細かい精密検査のデータは検査会社がそれぞれ持っているような状態です。一方でそれらのデータを使って価値あることをやりたいのは、製薬会社や医療保険系の保険会社です。データを様々な人が断片的に持っていて、かつそのデータの価値を一番引き出せる人が、データを持ってないということが、すごくわかりやすく起こっているのが医療の領域です。この医療ビッグデータの活用が、ひとつの議論です。患者さんのデータを共有しあう構造の中で、アルゴリズムで処理されて適切に医療データが提供される形になると、リスクがあれば早めに手を打てて、健康なまま長く生きることが可能です。

近未来に予想されるAIの具体的な活用について話し合う編集長杉原(左)と椎橋代表(右)

杉原:僕もまったく同じことをずっと言っています。僕らはたぶん将来、病院というものが形を変えていくだろうと考えています。日々生活していく中で当たり前のようにデータがとられ、レコメンデーションがどんどんされていって、健康寿命が延びていくと。製薬・投薬もそうですが、まだパーソナライズされたものがないですよね。そこまでには越えなきゃいけない壁がたくさんあるとは思いますが。

椎橋:医療費も削減されるので、国レベルで考えるとデータの統合は絶対やったほうがいいのですが、難しいのは、一歩踏み出す、その一歩の踏み出しによってネガティブな印象を受ける可能性があることです。短期的にいかにインセンティブがある形で各プレイヤーがそこに踏み出していけるかというのを設計することが重要だと思います。

杉原:そうですね。僕らもよく言っているのは、結局ここで一番大事なのはコミュニケーションだということです。どういう未来がインセンティブをくれるのかというのを提示しない限りは、たぶんみんなはデータ共有に賛成してくれないですよね。

「冷蔵庫の中の最適解」を
AIが導き出す!?

杉原:今後、医療の業界以外には、どういう分野でより顕著にAIが活用されていくでしょうか。

椎橋:そうですね。キーワードになるのが、フィジカル×コンシューマのデータの領域だと思っています。要はインターネットを介したデジタルなデータの分野は、すでにネット系のプレイヤーが色々とやっています。一方で物理的なところと切り離せない領域、医療もそうですが、これはまだネット系のプレイヤーもほとんど手つかずです。

食の領域もそうですね。例えばレシピは、データがフィジカルなので、あまりきちんと整備されていない。ここが整備されていくと、新しい料理をAIが発明したり、その人の今食べたいものと料理のスキル、あとは冷蔵庫の中に何が入っているかを総合的に見て、作り方まで含めた献立の提案ができる世界も可能です。これをやろうとすると、一社だけではできない。栄養という観点でいうと、先ほどの医療にもつながっていきますし、食周りのデータにAIを活用するというのはあると思います。

杉原:確かに食もパーソナライゼーションされていくほど最適解みたいなものが出てきますよね。と同時に、要はフードロスの防止にもつながると思います。だいたい日本だと年間600万トンくらい捨てられていて、実は事業者と一般家庭は、ほぼ同じくらいの量を捨てているそうなんです。ということは、まず冷凍庫の中の最適解がまだ出ていないのではないかと。買い物に対してのレコメンデーションが出てくればロスを減らせるし、そういう世界も、悪くないなと思います。スーパーマーケットで先に買っておいてくれるとか。

椎橋:結局、ネットのデジタルな消費って消費者の消費活動でいうとかなり部分的ですよね。フィジカルな領域の消費データにきちんとアルゴリズムやAIが入っていけば、バリュー地点をさかのぼって、産業全体のデータをつなげて、より効率化していくということが絶対に起こってくると思います。

杉原:僕らはデータを提供したら、1人あたり年間で何百万円かもらえる世界がくるだろうと予想しています。65歳以上からは年金をもらわなくても、たぶんデータ提供者にお金がもらえるみたいな未来が来るんじゃないかと。

椎橋:これまでのインターネットを中心としたイノベーションは、GAFAやBATなどの米中のインターネットジャイアントがデータを全部抱え込む世界でした。それに対して、ヨーロッパのGDPR(EU一般データ保護規則)などの動きもそうですが、個々人が自分のデータを管理するという分散型の方向に行ったほうが健康的ですよね。それが成り立ちうるひとつの領域が医療です。だから医療を起点に、それぞれが自分のデータを管理して、それを適切な範囲で提供することで、誰かに対して価値を提供して対価を得る。そういう社会的な構造を日本のマーケットで世界に先駆けて作って、その形を海外に展開していくことができると、すごく面白いと思います。まさに医療かつ高齢者という部分では、日本は世界最先端の課題先進国ですし。

杉原:今後日本の新しい産業を支えていく上では根幹となっていく部分かなと僕も思っています。課題先進国というのはある意味ラッキーですよね。

テックビジネスで
必要なのは技術の俯瞰図

杉原:一方でAIの世界は進化が速いですよね。そうすると、ビジネス側も研究をおろそかにできないと思います。それについてはどう考えていますか?

椎橋:AIもそうですが、あらゆるイノベーションが起こっている時は、まず学術的な領域から論文などの形で新しい技術が発表され、新しい手法が科学的に確立され、それが実用可能な技術に落とし込まれ、さらに現場で使えるソリューションになっていくという、一連の流れがあります。その意味で、アカデミアの先端にきちんとキャッチアップながら、それをどう使えばどんな産業ビジネス的な価値につながるのかということを考えることが大事だと思います。

ただ、学術的に新しいことを生み出すことをスタートアップ企業がやらなきゃいけないかというと、必ずしもそうではないですよね。どちらかというと、全体像がきちんと見えていて、技術の俯瞰地図を持っているということが必要です。つまり、この技術を探ろうと思ったらこの研究者にあたればいいとか、この論文を見ればいいとかいう全体図ですね。医療に例えれば、各専門医をつなげられる総合医のような立場です。これからスタートアップを起こす時には、実現したいことに対して、全体的なマップを見て、「これを実現するためにはこの専門医とこの専門医とこの専門医に聞きに行くのが重要だ」とか、「これをつなげるのが重要だ」とか、そう考えられることが大事ですね。

杉原:あとは誰とコラボやアライアンスを組んでいくかというのが大事になりますよね。実現したい未来に対して、1人ではなかなかチャレンジできませんから。HERO Xも、ここがコミュニティの場になって、様々なものが生まれていけばいいなと思っています。

椎橋徹夫(しいはし・てつお)
米国州立テキサス大学理学部物理学/数学二重専攻卒。ボストンコンサルティンググループに入社後、東京オフィス、ワシントンDCオフィスにてデジタル・アナリティクス領域を専門に国内外の多数のプロジェクトに携わる。BCG社内のテクノロジーアドバンテージグループのコアメンバーとして、ビッグデータ活用チームの立上げをリード。のちに東京大学工学系研究科松尾豊研究室にて産学連携の取り組み、データサイエンス領域の教育、企業連携の取り組みに従事。2016年、株式会社Laboro.AI(https://laboro.ai/)を創業、代表取締役CEOに就任

関連記事を読む

(text: 吉田直子)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー