対談 CONVERSATION

根性論も感情論もいらない。センシングがもたらす、ハラスメントなきスポーツの未来 後編

長谷川茂雄

近年、大きな社会問題になっている数々のハラスメント。とりわけスポーツ界では、監督やコーチと選手間の異常な主従関係や、暴力的な行為が問題視されることが多い。度々メディアでも報じられるこうした歪みの裏側には、記録やパフォーマンスの向上を目指す指導者側の感情的な空回りや、埃をかぶった根性論などが横たわっている。スポーツ科学とセンシングテクノロジーは、それをポジティブなコミュニケーションへと変える。第一人者である長谷川 裕氏をお招きした編集長対談。前編ではすでにヨーロッパのサッカーチームではこうしたスポーツの科学的分析が主流になりつつある話を伺ったのだが、日本のスポーツ界にもやっとその風が吹き始めているようだ。データを基にした指導で選手はどう変わるのか。未来のスポーツ指導について語り尽くしていただいた。

データ化すると選手の能力と課題が一目瞭然

杉原「具体的なトレーニングの測定についてもお聞きしたいのですが、長谷川さんは、いま何を一番重視されていますか?」

長谷川「ひとつは GPS ですね。GPS はこれからどんどん広まっていくと思います。トレーニングも分析できるし、試合も分析できる。それからいわゆるスプリントや持久力、それらを客観化することも可能です」

杉原「GPS は、やはり大切なんですね」

長谷川「はい。センシングという言い方をすると、最先端と思われるかもしれませんが、平たく言えばデータです。それをどう使っていくのかということなんです。GPS 同様大切なのは、筋力や筋パワーのデータですね。筋パワーというのは、筋力とちょっと違います。みんなそこをごっちゃにしていますが、質量の単位はkg、筋力の単位はN(ニュートン)、筋パワーの単位はW(ワット)というように、それぞれ別のものです。多くのトレーニングの指導者は N や W という単位を使わないばかりか、知らない人もたくさんいます。あとは心拍数や血中乳酸値など、基本的なものを計測することは難しくありません」

杉原「最近は、Jリーグでも選手の走行距離のデータなどは、よく聞かれるようになりましたよね」

長谷川「そうですね。総走行距離は、選手の平均を割り出すと1試合に10〜11km程度になります。あと大切なのは、スプリントの回数です。スプリントをどんな数値に設定するかも重要ですが、時速24〜25km というのが一般的。それを試合中に何回記録したかを計測します。総走行距離の中で早いスピードで走った割合や、加速度と減速度からはスピードの変化が読み取れますね」

杉原「その測定を、細かく解析するのは大変な作業ですね」

長谷川「そうですね。でも、こういったデータ測定を導入すると、試合を見ていた印象と実際の数値が違っていることが多いので興味深いですよ。すごく走っていたと思う選手よりも、実は全然違う選手が長い距離を走っていたり、総走行距離が短くてもスプリント回数がダントツに高い選手がいたり。そういうデータが見えてくると、もっと守備をしっかりするべきだとか、スプリント回数を増やすべきだとか、選手一人ひとりの課題も見えてくるわけです」

杉原「確かに、そうやって選手のパフォーマンスを数値的に可視化することは、新たなコミュニケーションツールになりますね」

感情論ではない選手の本当の適正を見出す

長谷川「そうです。熊本の八代市に、秀岳館高校という学校があります。熊本といえば大津高校というサッカーの名門校がありますが、そこになかなかに勝てないため、センシングなどのテクノロジーを導入したんですね。そうしたら、選手の内発的な動機付けができるようになって、コーチのほうも選手のいいところや課題が見つけられるようになったそうです」

杉原「これから大きな効果が期待できそうですね」

長谷川「センシングを導入して、試合中のスプリント回数や加速減速などの数値を計測しているのですが、参考としてプロはこのぐらいの数値だというデータを紅白戦の前に見せたところ、選手たちはその日の試合が終わった後に、クタクタになって倒れて笑っていたというんですね。指導者は、これまで紅白戦でそこまで力を出し切った選手の姿を見たことがないと言っていました。選手もデータで見せてあげると、目標が見えやすいんです。次の段階は、一人ひとりの能力に合わせてどういうトレーニングをするか? それをプランニングすることですね」

杉原「なるほど。計測して解析して、プランを立てるということですね。では、どのポジションが向いているというような適正は、どうやって見極めていくのですか?」

長谷川「例えばスプリントスピードを静止状態から30mまで測った場合、最初の5m、10mを何秒で走っているか? そして、最後の10mを時速何㎞で走っているのか? そういうところから適正が見えてきます。最初の5mで1秒切れる人は、Jリーグやラグビーの代表クラスで1人いるかいないか。でも最初が遅くても、最後の10mで時速32km出せるのであれば、世界的に見てもトップクラスですから、それを活かせばいいんですよ。そうやって、一瞬のスピードを求められるフォーワードがいいとか、ある程度の距離を早く走れると有利になる中盤がいいとか、わかってくるわけですね」

杉原「自分がどのポジションに向いているのか、感情論ではなく教えてもらえるのは、選手も嬉しいかもしれないですね」

長谷川「そうなんです。それに指導者側もセンシングの数値をもとに、選手の能力を活かした戦術も浮かんでくるようになる。データがわかれば、ぐっと科学的になりますし、合理的なプランが立てられるんです」

トレーニングでは最大の力を
何回繰り返すかが重要

杉原「センシングというと科学的な印象ですが、選手一人ひとりを計測するとか、フェイス・トゥ・フェイスでコミュニケーションを取るという部分はアナログですよね。そういう合理的なところと非合理的なところの良さを活かし協業することで、よりコーチングもスポーツも最大化していけますよね」

長谷川「おっしゃるとおりですね。そうやって、選手も指導者も前に進んでいけるということです」

杉原「自分はパラリンピックの競技プロダクトに関わっていますが、測定というのは少しずつわかってきたんですけど、解析に関してはまだまだ発展途上です。例えば、車いすレースの場合、スタートの5mを早くすることが大事なのか、それとも40mでマックスを出すのが重要なのか? そういうことをいろいろと模索しています。でもデータを可視化すると、感情論抜きに選手とコミュニケーションが取れるので、やりやすいです」

長谷川「そうですね。指導者の経験や感覚に委ねていたこれまでの指導方法は、才能のある選手を潰してしまっていたケースもありますから。それは、先ほどお話しした秀岳館高校サッカー部の先生も実感されていて、センシングによってこれまで気づかなかった選手の才能を開花できそうで、すごく嬉しいと言っていました。そうなると、もう暴力的な指導をしたり、無駄に長時間練習をする必要もないわけですね」

杉原「指導者も、センシングが自分を変えるきっかけになりますね。僕らは、いまレース用の車いすを伊藤智也選手と一緒に開発していますが、東京2020のとき彼は58歳になるんです。それでどんな結果が出せるのか、社会的にも注目されると思いますから、そういう新しいテクノロジーや考え方を付与して、どんどん進んでいきたいですね」

長谷川「いまはもう、歯を食いしばって辛い練習をやれば結果がついてくると思われていた時代とは違うんです。いかに高速で大きな力を爆発的に短時間で出すか。それは、主観ではわからない。トレーニングで大事なのは、疲れるのが目的ではなくて、最大の力を出すことを何回繰り返すか。それを計測しながら効果的にやるべきです」

杉原「そうですね。能力が可視化できれば、そういうトレーニングができますから効率もいいですね」

長谷川「有名な話ですが、何かのトレーニングを7割ぐらいの力で10回3セットやったグループと、100%の力で3回10セットやったグループでは、同じ回数ですが、明らかに後者の方が爆発的な筋力が付くんです。そうやって効果的なトレーニングができれば、より合理化していけます」

杉原「そういうことですね。長谷川さんがやられているセンシングの技術があれば、選手も自分の選択肢が明確にわかりますし、それを組み立てるプランも立てやすくなる。そういう材料を提供されているというのは、素晴らしいです。でも今日のお話しを聞いて、自分もジム通いでやっているトレーニングを見直そうと思いました。まずは、真っ先に回数を減らそうと思います(笑)」

前編はこちら

長谷川 裕(はせがわ・ひろし)
1956年京都府生まれ。龍谷大学経営学部教授(スポーツサイエンスコース担当)。日本トレーニング指導者協会(JATI)理事。エスアンドシー株式会社代表。筑波大学体育専門学群卒業、広島大学大学院教育学研究科博士課程前期終了。龍谷大学サッカー部部長・監督、ペンシルバニア州立大学客員研究員兼男子サッカーチームコンディションコーチ、名古屋グランパスエイトコンディショニングアドバイザー等を経て、スポーツセンシング技術等を利用した科学的トレーニング理論の実践的研究を続ける。著者は『アスリートとして知っておきたいスポーツ動作と体のしくみ』、『サッカー選手として知っておきたい身体の仕組み・動作・トレーニング』ほか多数。

(text: 長谷川茂雄)

(photo: 河村香奈子)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

Laboro.AI 椎橋徹夫と語る AIが引き出す新しいバリュー データ統合ビジネスで見えてくる日本の未来

吉田直子

現在はAIの第三次ブームといわれている。機械のスペックが上がり、膨大なデータを処理できるようになったことで、いわゆるディープラーニングが可能になり、ビジネスの様々なシーンに活用されるようになった。しかし、AIが何を得意とし、実際にAIを使ってどんなことができるのかは一般にはあまり知られていない。AIを活用したオーダーメイド型のソリューション開発やコンサルティングを提供する株式会社 Laboro.AIのCEO・椎橋徹夫氏に、編集長・杉原行里がAIビジネスの可能性を聞く!

AIは人間の右脳的な働きを実現できる

杉原:僕はその分野にいるのでそう感じてはいないのですが、一般の方はAIを神格化している部分があると思います。そもそも“AIはなんでもできるのか?問題 ”というのがあると思うのですが、そのあたりを教えていただけますでしょうか?

椎橋:AI万能論に対してよく言うのは、まず「AIは基本的にはソフトウェアです」ということです。ただ、今までのソフトウェアやITシステムとは少し種類が違うことができるようになっています。今までのソフトウェアはロジカルな処理を正確に速くやることが得意でした。一方で直感的な処理が結構難しかったんです。

例えば、画像を見て、それが犬か、猫かを分類するみたいなことは、明文化できない直感的な処理が人間の脳の中で起こっています。そういう直感的な処理は今までのソフトウェアでは全くできませんでした。でも、AIはそれができるようになった。人間のように賢くて難しいことができるというより、人はわりと当たり前にやっているけれども、従来ならプログラムやルールに落とし込みきれなかった処理ができるようになったソフトウェアだと考えています。今までのソフトウェアが左脳的なものだったのに対して、AIは右脳的な処理ができるようになったと言ってもいいと思います。膨大なデータから自動的に特徴を見い出して、それに沿って具体的な認識や予測ができるようになりました。ですから、AIという言葉は「データに基づいた直感的な処理ができるソフトウェア」や、「認識や予測のアルゴリズム」という捉え方をするのが、現時点では実態に近い説明ではないでしょうか。

杉原:もともと、椎橋さんは東大の松尾研究室にも関わられていたということなので、その分野のエキスパートだと思うのですが、僕は、AIが介在することによって、今までバリューとしてとらえていなかった一連の行動や、価値を見出せていなかったデータを、価値あるものに置換できる未来を期待しているのですが。

椎橋:はい。まさにそうですね。

杉原:ヘルスケアの部門はそれが顕著だと思います。御社や椎橋さんの中で、今後こういう未来が来そうだという予測はありますか?

椎橋:はい。実はヘルスケア、メディカルの領域はひとつの重点領域として考えています。まさに、AIのイノベーションというのは、今までは価値に変換できなかった細かいデータを、AIというアルゴリズムを通して効率よく価値(バリュー)に変換できることです。でも、その中でまずみなさんがやるのは、とりあえず持っているデータの価値を引き出すためのAIを開発することなんです。

一方で20〜30年後を考えると、そういうタイプの取り組みの価値は、むしろ小さくなると考えています。より大きいのはA社、B社、C社、それぞれが持っている断片的なデータをきちんと組み合わせてAIのアルゴリズムを通すと、全員にとってかなり大きな価値を生み出すという流れです。今、我々は様々な領域でクライアントと1対1でAIのスキームを作っていますが、この先は複数のデータをつなげてAIに入れて価値を引き出すということも視野に入れていく必要性があるなと感じています。

杉原:具体的な例はありますか?

椎橋:はい、そうですね、例えば、今、健康診断のデータは保険組合が、病院の診断データは病院が、細かい精密検査のデータは検査会社がそれぞれ持っているような状態です。一方でそれらのデータを使って価値あることをやりたいのは、製薬会社や医療保険系の保険会社です。データを様々な人が断片的に持っていて、かつそのデータの価値を一番引き出せる人が、データを持ってないということが、すごくわかりやすく起こっているのが医療の領域です。この医療ビッグデータの活用が、ひとつの議論です。患者さんのデータを共有しあう構造の中で、アルゴリズムで処理されて適切に医療データが提供される形になると、リスクがあれば早めに手を打てて、健康なまま長く生きることが可能です。

近未来に予想されるAIの具体的な活用について話し合う編集長杉原(左)と椎橋代表(右)

杉原:僕もまったく同じことをずっと言っています。僕らはたぶん将来、病院というものが形を変えていくだろうと考えています。日々生活していく中で当たり前のようにデータがとられ、レコメンデーションがどんどんされていって、健康寿命が延びていくと。製薬・投薬もそうですが、まだパーソナライズされたものがないですよね。そこまでには越えなきゃいけない壁がたくさんあるとは思いますが。

椎橋:医療費も削減されるので、国レベルで考えるとデータの統合は絶対やったほうがいいのですが、難しいのは、一歩踏み出す、その一歩の踏み出しによってネガティブな印象を受ける可能性があることです。短期的にいかにインセンティブがある形で各プレイヤーがそこに踏み出していけるかというのを設計することが重要だと思います。

杉原:そうですね。僕らもよく言っているのは、結局ここで一番大事なのはコミュニケーションだということです。どういう未来がインセンティブをくれるのかというのを提示しない限りは、たぶんみんなはデータ共有に賛成してくれないですよね。

「冷蔵庫の中の最適解」を
AIが導き出す!?

杉原:今後、医療の業界以外には、どういう分野でより顕著にAIが活用されていくでしょうか。

椎橋:そうですね。キーワードになるのが、フィジカル×コンシューマのデータの領域だと思っています。要はインターネットを介したデジタルなデータの分野は、すでにネット系のプレイヤーが色々とやっています。一方で物理的なところと切り離せない領域、医療もそうですが、これはまだネット系のプレイヤーもほとんど手つかずです。

食の領域もそうですね。例えばレシピは、データがフィジカルなので、あまりきちんと整備されていない。ここが整備されていくと、新しい料理をAIが発明したり、その人の今食べたいものと料理のスキル、あとは冷蔵庫の中に何が入っているかを総合的に見て、作り方まで含めた献立の提案ができる世界も可能です。これをやろうとすると、一社だけではできない。栄養という観点でいうと、先ほどの医療にもつながっていきますし、食周りのデータにAIを活用するというのはあると思います。

杉原:確かに食もパーソナライゼーションされていくほど最適解みたいなものが出てきますよね。と同時に、要はフードロスの防止にもつながると思います。だいたい日本だと年間600万トンくらい捨てられていて、実は事業者と一般家庭は、ほぼ同じくらいの量を捨てているそうなんです。ということは、まず冷凍庫の中の最適解がまだ出ていないのではないかと。買い物に対してのレコメンデーションが出てくればロスを減らせるし、そういう世界も、悪くないなと思います。スーパーマーケットで先に買っておいてくれるとか。

椎橋:結局、ネットのデジタルな消費って消費者の消費活動でいうとかなり部分的ですよね。フィジカルな領域の消費データにきちんとアルゴリズムやAIが入っていけば、バリュー地点をさかのぼって、産業全体のデータをつなげて、より効率化していくということが絶対に起こってくると思います。

杉原:僕らはデータを提供したら、1人あたり年間で何百万円かもらえる世界がくるだろうと予想しています。65歳以上からは年金をもらわなくても、たぶんデータ提供者にお金がもらえるみたいな未来が来るんじゃないかと。

椎橋:これまでのインターネットを中心としたイノベーションは、GAFAやBATなどの米中のインターネットジャイアントがデータを全部抱え込む世界でした。それに対して、ヨーロッパのGDPR(EU一般データ保護規則)などの動きもそうですが、個々人が自分のデータを管理するという分散型の方向に行ったほうが健康的ですよね。それが成り立ちうるひとつの領域が医療です。だから医療を起点に、それぞれが自分のデータを管理して、それを適切な範囲で提供することで、誰かに対して価値を提供して対価を得る。そういう社会的な構造を日本のマーケットで世界に先駆けて作って、その形を海外に展開していくことができると、すごく面白いと思います。まさに医療かつ高齢者という部分では、日本は世界最先端の課題先進国ですし。

杉原:今後日本の新しい産業を支えていく上では根幹となっていく部分かなと僕も思っています。課題先進国というのはある意味ラッキーですよね。

テックビジネスで
必要なのは技術の俯瞰図

杉原:一方でAIの世界は進化が速いですよね。そうすると、ビジネス側も研究をおろそかにできないと思います。それについてはどう考えていますか?

椎橋:AIもそうですが、あらゆるイノベーションが起こっている時は、まず学術的な領域から論文などの形で新しい技術が発表され、新しい手法が科学的に確立され、それが実用可能な技術に落とし込まれ、さらに現場で使えるソリューションになっていくという、一連の流れがあります。その意味で、アカデミアの先端にきちんとキャッチアップながら、それをどう使えばどんな産業ビジネス的な価値につながるのかということを考えることが大事だと思います。

ただ、学術的に新しいことを生み出すことをスタートアップ企業がやらなきゃいけないかというと、必ずしもそうではないですよね。どちらかというと、全体像がきちんと見えていて、技術の俯瞰地図を持っているということが必要です。つまり、この技術を探ろうと思ったらこの研究者にあたればいいとか、この論文を見ればいいとかいう全体図ですね。医療に例えれば、各専門医をつなげられる総合医のような立場です。これからスタートアップを起こす時には、実現したいことに対して、全体的なマップを見て、「これを実現するためにはこの専門医とこの専門医とこの専門医に聞きに行くのが重要だ」とか、「これをつなげるのが重要だ」とか、そう考えられることが大事ですね。

杉原:あとは誰とコラボやアライアンスを組んでいくかというのが大事になりますよね。実現したい未来に対して、1人ではなかなかチャレンジできませんから。HERO Xも、ここがコミュニティの場になって、様々なものが生まれていけばいいなと思っています。

椎橋徹夫(しいはし・てつお)
米国州立テキサス大学理学部物理学/数学二重専攻卒。ボストンコンサルティンググループに入社後、東京オフィス、ワシントンDCオフィスにてデジタル・アナリティクス領域を専門に国内外の多数のプロジェクトに携わる。BCG社内のテクノロジーアドバンテージグループのコアメンバーとして、ビッグデータ活用チームの立上げをリード。のちに東京大学工学系研究科松尾豊研究室にて産学連携の取り組み、データサイエンス領域の教育、企業連携の取り組みに従事。2016年、株式会社Laboro.AI(https://laboro.ai/)を創業、代表取締役CEOに就任

関連記事を読む

(text: 吉田直子)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー