テクノロジー TECHNOLOGY

医療に大きな変革をもたらす培養筋肉の研究は、もうここまで来た!

浅羽 晃

分野横断型の研究が進むロボットの世界。工学と化学、物理、医学などの研究が融合し、培養した筋肉がまるで人間の腕のような動きをするロボットを東京大学生産技術研究所の研究チームが発表した。チームを牽引してきた研究室のリーダー、竹内昌治教授は、この研究を「バイオハイブリッド」と呼ぶ。バイオハイブリッドな研究とは、いったいどのようなものなのか。

研究室メンバーのバックグラウンドは
機械工学、化学、物理、生物、医学など多彩

中央上部の白い部分が培養筋肉。オレンジ色の部分は3Dプリンタでつくった樹脂の骨。

生体特有の能力を人工物のなかに取り入れる試みは、科学の歴史のなかで、繰り返されてきた。しかし、現実には、人工物で生体の機能を完全に模倣することは不可能に近い。人工物を生体に取り入れるのではなく、生体と人工物とのハイブリッドをつくることで、生体の能力を「ものづくり」に活用しようとしているのが竹内教授率いる同研究所のチームだ。今年(2018年)5月、米科学誌に発表された論文。世界中の注目を集めることになったその内容は、人工的に培養した組織二つを樹脂製の骨格に付けることで、人間の指に似た動きができるロボットを開発、1週間動き続けることに成功したというものだった。

「私の研究室では、いろんな方向で研究しているのですが、メインとなっているのはバイオハイブリッドという考え方です。僕のバックグラウンドは機械工学ですが、研究室のメンバー、それぞれのバックグラウンドは、化学、物理、生物、医学など、多岐にわたっています」

入れ替わりながらも常時50~60名いるメンバーは、工学、生物学、化学、医学などのPh.D取得者、学生、メディアアーティスト、会社社長など、立場もさまざまだ。

生産技術研究所は異なる専門分野を持つ研究者の交流の場でもある。

「異分野の融合型研究をやっていくと、考え方自体がどんどん、どんどんハイブリッドになっていきます。たとえば現在、生体と機械のハイブリッドな研究を推し進めています。僕ら、ものづくり屋がまだ実現できていないのは、生体に見られるような特殊で、非常に魅力的な機能です。それは1分子レベルで物質を検出してしまう能力であったり、超効率的な物質生産能であったりします。自己複製や自己修復という能力も、生体特有のものです。そういう機能を人工物のなかに取り入れる試みは、長い歴史のなかでいろんな研究がなされてきました。しかし、まだ、完全には人工物で生体の機能をしっかりと模倣できているわけではありません。そうであるのなら、生体を1つの人工物と同じような感覚で用いることのできるパーツとして、人工物のなかに融合したバイオハイブリッドシステムとして提案していこうというのが、僕らのアプローチです」

これまでの具体的な成果としては、人の汗の匂いに反応する蚊の触角に含まれている嗅覚受容体を人工的に再構成し、人の匂いに反応するセンサーをつくることに成功した。開発が進めば、足場や視界の悪さから発見が遅れてしまうような災害地などでの救助活動にも役立つ。

筋芽細胞が筋繊維となり、
筋肉となるプロセスを人工的につくる

竹内教授は、ハイブリッドな発想が社会の諸問題を解決し、科学技術を進展させると考えている。

今年、米科学誌に論文を発表した培養筋肉も、生体を人工的につくるという点が共通する。

「筋肉は、直径が10ミクロンくらいの筋芽細胞が組み合わさって出来ています。筋芽細胞が集まると、細胞膜同士が融合して、きれいな繊維ができ、その繊維が束となって筋組織ができます。筋組織と神経がつながり、神経から信号が来ると筋肉が収縮するというのが我々の体の中で起きている筋肉が動くメカニズムです。普段、筋肉はお母さんのお腹のなかで細胞が分裂して出来上がってくるわけですが、僕らは組織工学的なアプローチで、体外で筋肉をつくっているのです」

筋芽細胞が筋繊維となり、筋肉となるプロセスを、人工的につくり出しているのだ。

「筋芽細胞を集めて、あるゼリー状の空間のなかに入れて、培養液を加えると、自ずと細胞は自己集積してきて、筋繊維が出来上がります。それを、とても細長い空間で行なうと、筋繊維がある一定の方向に配向し、そこに電気信号をかけると収縮するのです。その方法自体はこれまでもあるのですが、僕らは、まず細胞をゼリーのなかに閉じ込め固めた後、そのゼリーを型枠から取り出し、いろんなところに貼り付けるように改良しました。貼り付けた後に、その場で細胞が筋繊維に成長できる方法を考案したのです。」

ゼリーごと型枠から取り出せるようにしたことで、培養筋肉はパーツとして使えるようになったのだ。

「たとえば、3Dプリンタで骨格をつくり、この関節が動いてほしいなというところに筋肉を合わせて、電気刺激を与えると関節が動くようなシステムをつくりました。生体の組織のものづくりと、3Dプリンタでつくるものづくりを、うまく融合させたハイブリッドシステムを提案しているという状況です」

将来的には培養筋肉の大型化も可能だろうが、そのためのハードルはまだ高い。

「細胞なので、いつも養分を与えないといけません。筋肉を分厚くすると、培養液が内部まで行き渡らなくなるのです。人間の筋肉は太いのに栄養が行き渡るのは、筋肉のなかに血管が通っているからです。現状の培養筋肉は、あくまでもプロトタイプとしてつくっていて、生体組織と3Dプリンタでつくった人工物との融合、融合する際にどのようなものづくりが重要になってくるかという基礎的な研究のアウトプットとして出しています」

研究で培った技術は将来、
医薬品開発のモデルや培養肉に応用可能

現在は基礎的な研究の段階だが、培養筋肉には大きな展望もある。

「左右1対として、両側で同じようなテンションで引っ張る拮抗構造の培養筋肉は、1週間以上長持ちします。そうなると、使えるアプリケーションがあるのではないでしょうか。たとえば、医薬品開発のモデルとして使えるのではないかと考えています。筋肉をターゲットとした薬はたくさんあります。通常は人の細胞をとってきて、皿の上で、2次元で培養して、医薬品に対する収縮具合を見ます。ただし、2次元で収縮するのと、3次元で収縮するのとでは、全く違う応答を示すことも多々あります。力も違うし、細胞一つ一つが持っている能力も違うし、グルコースの消費量も違います。そうした違いがあるために、2次元では、薬がどういうふうに効いたかというのは、正しくはわからないのです」

3次元の培養筋肉なら、より人体の筋肉に近いモデルでデータを取ることができる。

「その発展形として、筋肉と神経とを結びつけることにより、ALSの患者さんの治療薬の開発モデルもできると考えています。通常、3次元の筋肉を研究するときは、ネズミなどの動物を使いますが、そこには2つの問題があります。動物実験をしていいのかという倫理的な問題と、ネズミとヒトは種が違うので、ネズミに効いてもヒトに効かないということはたくさんあるという問題です。ヒトの細胞を使って培養筋肉を作れば、ヒトの3次元の筋肉を模倣することになり、種の違いは起きません。将来は、動物実験を使わないような方向に進むのではないかと思っています」

ヒトの筋肉以外に応用すれば、次のような展望も開ける。

「牛の筋肉をつくることができれば、牛を殺さなくても牛肉ができます。オランダの研究者が世界で初めて培養肉をつくったのですが、環境負荷が少ない、細菌を一切含まないクリーンな環境でつくることができる、高蛋白・低脂肪のようなデザインをすることができるなど、メリットは多いのです。欧米では培養肉をつくるベンチャーも立ち上がっています。僕らも筋組織をつくり、筋繊維を配向させるという技術を持っているので、そちらの分野への応用もまじめに考えています」

さまざまな分野の研究者が集まる研究室だからこそ、培養筋肉について、さまざまな発想が生まれるのだろう。

「ある人は本気で医薬品を開発しようとしていて、ある人は筋肉がどのように発生してくるのかを基礎生物学としてしっかり調べようとしています。また、ある人はロボットに応用しようと試みています」

いずれにしても、東京大学生産技術研究所の竹内研究室に集う研究者たちは、楽しさを感じながら研究に打ち込んでいることだろう。

竹内昌治(Shoji Takeuchi)
1972年、東京都生まれ。東京大学工学部産業機械工学科卒業、同大大学院工学系研究科機械情報工学専攻博士課程修了。現・同大生産技術研究所 教授、総合バイオメディカルシステム国際研究センター センター長。研究室では「Think Hybrid」を合言葉にしている。「少子高齢化の問題、環境問題、安心安全の問題など、多くの問題があるときに、一つの専門分野だけでは解決できないことがあります。いろんな分野の人が集まって、いろんな発想をして、解決するのが自然な流れでしょう。それを一つの研究室でやっていこうというのが、私共のポリシーです」

(text: 浅羽 晃)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

テクノロジー TECHNOLOGY

ダンスに音は必要ない!?鹿子澤拳「Sync-pulse 振動で踊ってみた」

HERO X編集部

動員数16万人超えと、過去7年間の最高動員数を更新した「ニコニコ超会議2018」にて、音にとらわれないダンスの可能性がプレゼンテーションされた。音楽と連動した触覚振動(Haptic vibration)を通信で届けるシステムを用いて、Deaf Dancer (耳の聞こえないダンサー)がダンスを披露した『Sync-pulse 振動で踊ってみた』プロジェクトである。

この日ダンスパフォーマンスでステージを盛り上げてくれたのは、プロとして活躍する Deaf Dancer 鹿子澤拳さん。鹿子澤さんは、生まれつき聴覚に障がい(感音性難聴 /骨伝導が適用できないタイプ)があるが、「千本桜 feat 初音ミク」の高速ビートをもコンプリートしたダンスを華麗に披露した。

『Sync-pulse 振動で踊ってみた』プロジェクトは、NTTコミュニケーション科学基礎研究所が、専門技能を持つ社外コラボレーターとともに実現したものだ。同研究所は、人には聞こえない周波数の音「非可聴音」を使った通信で、ダンスをするために作られた触覚振動(Haptic vibration)を届けるシステムの開発を行った。

システムの仕組みはこうだ。まずは、ダンサー自身が曲に合わせて振動を感じられるよう、譜面を作成。音楽に合わせた振動のタイミングを設定する訳だ。それにあわせて、人には聞こえない周波数の音「非可聴音」を使い、ダンサーの持つスマートフォンに接続されたデバイスを振動させる。(ダンサーの胸と背中に振動子が装着されている)

「非可聴音」は、スマホでは検知可能な信号のため、情報伝達ができるのである(非可聴音通信の仕組み自体はエヴィクサー株式会社が開発)。スマホの中には、音楽に合わせた振動情報が入っており、非可聴音信号を検知することでそれが再生されるといった仕組みだ。

また、この振動は、音楽に合わせて踊るために作られた振動であり、リズムを強調したり、振りやメロディに合わせて作られているとのこと。

さらに、このシステムは同時に多くの人に、ダンスのためにデザインされた振動を伝えることができるため、同じデバイスをつけた複数のダンサーが同時に振動信号を受け取り、団体でのダンスも可能にした。

音楽は、言葉も人種も超える力があるが、ダンスはそれ以上だ。耳が聞こえても聞こえなくとも、すべての人がダンスを楽しめる試みの先が、非常にたのしみである。

「Sync–pulse 振動で踊ってみた」プロジェクト
企画:渡邊淳司 (NTTコミュニケーション科学基礎研究所)
ダンサー:鹿子澤拳
プロジェクト・インタープリター:和田夏実
触覚デザイナー:鈴木理絵子
触覚制作ディレクター:鈴木泰博 (名古屋大学 情報学部)
ウェラブル技術協力:吉田知史 (of Sheep inc.)
運営協力:野口綾子
非可聴音通信技術協力:エヴィクサー株式会社
システム開発協力:株式会社カタリナ

渡邊 淳司 (Juniji Watanabe)
NTTコミュニケーション科学基礎研究所所属。人間の触覚の知覚メカニズムを研究。主著『情報を生み 出す触覚の知性』(毎日出版文化賞受賞)。同時に科学館 やメディア芸術祭等において研究の展示公開も行う。

鹿子澤 拳 (Ken Kanokozawa)
生まれつき聴覚に障がい(感音性難聴)がある。幼い頃からダンスに興味があり、高校 1 年より少女時代等 の k-pop の分野で踊ってみたを始める。ストリートダンス歴(Lock / Hip Hop)4 年。2017 年、東京2020 公認文化オリンピアード SLOW MOVEMENT Next Stage ショーケース&フォーラム「聞こえなくても、 聞こえても(ダンス劇)」 / ヨコハマ・パラトリエンナーレ 2017 空中パフォーマンス(エアリアル) / Rock Carnival ミュージカル 2017 あうるすぽっとタイアップ公演シリーズ:「夏の夜の夢」。2018年、アジア太平洋障害者芸術祭「TRUE COLOURS FESTIVAL」BOTAN x DAZZLE メンバーとして出演。

Photo提供:NTTコミュニケーション科学基礎研究所)
(Movie提供:野口綾子)

(text: HERO X編集部)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー