対談 CONVERSATION

悲惨な事故を激減できるか?データ活用が可能にする〝未事故〟社会

宮本さおり

ドライブレコーダーの普及と共に、もはや当たり前のようにいわれ始めた運転にまつわるセンシング。先日、高齢者の運転により母子の命を奪われた痛ましい事故の初公判が行われたばかりだが、被告はあくまでも「車の不具合」が理由だと主張し注目を集めた。交通事故は誰にでも起きうることだが、裁判で白黒がついたとしても失われた命が戻ることはない。ドライバーや歩行者が気をつけるべきこともあるが、人間の感覚だけに頼らない、事故を未然に防ぐ試みが多方面ではじまっている。あらゆる移動にまつわるセンサーデータを収集、解析することで社会に役立てようとする株式会社スマートドライブでは、事故を未然に防ぐことにも活用できそうなデータ活用プラットフォームを構築、今後は渋滞緩和などにも役立てたいと語っている。同社CEOの北川烈氏を編集長・杉原行里が訪ねた。

技術と実生活を結んで
革新をおこす

杉原:実は、僕がRDSでやっていることと、スマートドライブさんがされていることで近いなと思うところがありまして、今日はお話を伺いにきました。

北川:ありがとうございます。

杉原:僕たちはセンシングで全身を可視化して、今後はプライベートブロックチェーンで、未病や自分の身体の最適解を知ることなどをやっていきたいと思っているんです。スマートドライブさんがされていることは、考え方として非常に近いことを「移動」という分野においてされているなと感じているのですが。

北川:我々は〝動くもの〟を軸に考えてデータプラットフォームを作ろうとしています。一番多いものとしては車なんですけど、最近ですと人の動きや、そのセンサーデータ、さらにその周辺の情報で、例えば、事故を起こした場合に、その周辺情報をひとつのプラットフォームに集めて解析するようなこともはじめています。例えば運転にまつわるデータですと、集めたデータを解析するアルゴリズムがいくつかあって、それを他社に提供して、新しい保険を一緒に作るとか、自動車メーカーの新しいサービスを作るとか、マーケティング戦略を一緒に作るといったような事業と、そのプラットフォームを活用し我々自身がSaaSのサービスを展開しています。

事業概要を説明する株式会社スマートドライブ北川氏

 

杉原:なるほど。もともとスマートドライブって、北川さんが立ち上げられたのですか?

北川:そうです。私が大学院にいるときに、移動体などの時系列処理のデータ分析研究をやっていたのですが、それを社会実装したいなと思ったことがきっかけで創業した会社です。

杉原:創業はいつ頃ですか?

北川:2013年の末ですね。

杉原:ものすごくいいところに視点を置かれましたね。これから一番トレンドになるところですよね(笑)。日本はいま、海外の先進国と比べるとデータサイエンティスト不足で大変なことになっているといわれていますが、御社には盤石な体制がありますよね。データの集積や解析に、そもそも興味を持たれたきっかけは何かあったのですか?

北川:大学院って、研究テーマがたくさんあると思うのですが、私の場合は技術的な領域と自分の実生活が密接に結び付くところがいいなと思っていました。大学院の研究領域だと、技術的にはすごいけど、リアリティーがない世界ってあるんですよね。私はそういうものよりは、やはり実生活の課題を解決するとか、自分では “肌触りがある領域” という言い方をするんですけど、そういった領域のものがいいなと感じていて、研究室でも実世界の問題に応用が効くとか、技術をメディアアートなどの表現に応用することを推奨されて、自由に研究することを許してくれていました。そんな中、このテーマに出会って腹落ちをしたというのがきっかけです。だから、車の渋滞をどうしたら解消できるのかなど、身近な問題に目を向けるようになっていったんです。

〝車に乗るのが嫌い。〟
から始まった開発

杉原:僕たちがRDSでプロダクトを開発するときに、“自分ごと化” という言葉をよく使うんですけれども、それと近いのかなと。自分の身の回りに起きていることではない、もう少し先のことまで言ってしまうと、その感覚値にズレが生じてしまいますよね。例えば今の北川さんのお話だと、車の渋滞をどうやって解消するかって、渋滞を解消してほしくない人なんていないですもんね(笑)。

北川:そうですよね。私がこの話をするとネタっぽくなってしまうんですけど、実は私、あまり車が好きではないんです。車酔いをしてしまうので、できれば乗りたくない。
そんななか、事故や渋滞、車酔いといった移動における負の部分が、今後自動運転技術などの進歩で解決されていくという社会を早く実現させたいなという思いで創業しました。

杉原:北川さんの会社では、異業種とのパートナーシップや提携をされている。いろんな領域にプラットフォームで培われたアルゴリズムを提供されているという印象を受けたのですが、根幹となる技術やアルゴリズムになにか違いはあるのですか?

北川:基本は同じです。そのベースとなるものを保険に使うか技術に使うかによっての差はありますが、根底の部分は同じです。

杉原:今はどのようなことをされているのですか?

北川:分かりやすい例でお話しすると、一日の運転を数十万通りの軸でデータポイントを取り分けて、そこで機械学習をさせたりしています。だいたい2週間くらいかけてデータを取ると、その人が事故を起こす確率をかなりの高確率で当てられるんです。また、エンジンをかけた瞬間にその人がどこに行くかを推定するような研究開発も行っています。

杉原:それはすごい!!

北川:そういったR&D(研究開発)要素も含まれたアルゴリズムもあれば、リアルタイムにいろんなところから上がってくるセンサーデータを、APIとして様々なサービスに使えるようにすることもしています。

杉原:今のお話の中に出てきたR&D的な要素でいくと、例えばステアリングを握った感覚とか、ドアの開閉時の力の強弱なんかも含めて、この人がこれからどこに行くのかを推測したりするということですか?

北川:今はまだそこまではいっていないのですが、そういったデータが取れるようになれば、もっと精度は上がってくると思います。今我々が取っているのはGPSとかカメラの情報なので、その時の天気とか、エンジンをかけた時間帯とか、過去の行動履歴から推定できないかということをやっています。あとは、タイヤのメンテナンス時期をお知らせできるといったようなことです。集積したデータを使えば、故障を予測することも出来るようになります。

事故を未然に防ぐ仕組み

杉原:医療の側面から考えると未病を認知する感じですよね。僕は車が好きなので、タイヤ交換しない人やタイヤの空気圧を調べない人が信じられないんです(笑)。事故の要因として、車の整備不良もかなりの割合を占めていると思われますし、整備不足を指摘してくれるだけでも事故や故障を未然に防ぐことにつながりそうですよね。そのほかには、どんなことをされているのでしょうか。

北川:2つあります。ひとつは、我々はDX1.0と呼んでいるのですが、企業運営を考える時、社員であったり、物であったりがどこを移動しているかが分かったり、安全運転の度合いが分かるだけで、移動効率が上がるんですよね。例えば、営業車両の位置が分かれば、どういう動きをしていたのかを把握できる。そのデータを使えば、個人がいちいち日報を付けなくても、自動で日報が上がってくるとか、そういった移動にまつわる業務プロセスがDX化されるみたいなものって、実はまだまだ出来ていない。そこに対して我々は車両の管理とか、ドライバーの事故を無くすといったプロダクトや見守りみたいなものを出しています。

杉原:つまり、移動にまつわるDXを広く浅くやっていこうとされている。

北川:そうです。

杉原:その仕組みは物流などにも広く利用できそうですよね。

北川:そうですね。先ほどご質問いただいた、リスクや故障、行動を予測するというのは、我々としてはプラットフォーム事業と呼んでいるところで、これをパートナーと一緒に、例えば保険と組み合わせることで、安全運転をしている人は保険が安くなるといったような価格が変動する保険が作れますよとか。車を買ったら終わりではなくて、その後のメンテナンスまで完璧にサポートされている車が手に入りますよといったように、弊社のプラットフォーム×他社のサービスで、より深いDXをしていけないかと考えているのです。それをDX2.0と呼んでいて(笑)。広く浅くと、パートナーと深くつくっていくという、この2つの事業を展開しているところです。

杉原:おもしろいですね。DX3.0 、DX4.0はどうなっていくのか、これから楽しみですね。先ほど北川さんがおっしゃっていたように、物流にその技術が入っていったとき、僕たち消費者側もデータ提供を行っていれば、家にいて受け取れる時間帯に事前確認する必要なく配達してらえたりしますよね。

北川:弊社の強みは、そういったプラットフォームとして他社にいろんな形で提供できるということと、それによって、いろんなものとデータを連携しやすいということなんです。

杉原:ビッグデータが集まってくるということですよね。ということは、そのビッグデータにアクセスできる権利を、パートナーと契約しながらやっていくというのが現在のスマートドライブさんのビジネスモデルということですよね。

北川:おっしゃる通りです。ゆくゆくはマーケットプレイスみたいなイメージで、いろんな会社をつないでいくと、自動的に他社とつながってサービスの幅が広がっていくというというところまで出来てくれば、そこがDX3.0 といったところでしょうか(笑)。

杉原:すごいな。もう3.0まできましたね(笑)。楽しみです。

(プロフィール)
北川烈(きたがわ・れつ)
SmartDrive 代表取締役 (CEO) 。慶應義塾大学在籍時に国内ベンチャーでインターンを経験、複数の新規事業立ち上げに参加。その後、1年間米国に留学、エンジニアリングを学んだのち、東京大学大学院に進学。研究分野は移動体のデータ分析。その中で、今後自動車のデータ活用、EV、自動運転技術が今後の移動を大きく変えていくことに感銘を受け、在学中にSmartDriveを創業した。
https://smartdrive.co.jp

(text: 宮本さおり)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

【HERO X×JETRO】都市=メトロに風況情報ソリューションを提供。メトロウェザーの「風を読む」テクノロジー

HERO X編集部

JETROが出展支援する、世界最大のテクノロジー見本市「CES」に参加した注目企業に本誌編集長・杉原行里が訪問。京都大学初のベンチャーとしてスタートし、高性能ドップラー・ライダーを開発したメトロウェザー株式会社。大気中にレーザーを照射することで、数キロ先の風向や風速を測定できるという装置で、装置自体は他社でも作られているが、今までにない距離と精度を提供するという。さらにゲリラ豪雨の予測や、ドローンの実証実験にも貢献している。ドローン技術はもちろん、都市防災にも並々ならぬ関心をもつ編集長が、同社代表取締役CEOの東邦明氏に「風を読む」技術の可能性を聞く!

ゲリラ豪雨や強風の
予測を「光」で行う

(画像元:https://www.metroweather.jp

杉原:僕がメトロウェザーさんに興味を持ったのは、もちろん技術的な面もありますが、御社のウェブサイトにも掲載されている「風を制し、空の安全を守る」という言葉がカッコいいなと思ったからです。そもそも、なぜ「風」に行き着いたのですか?

東:もともと学生の時はゲリラ豪雨の予測というか、線状降水帯の研究をずっとやっていて風とは無縁だったのですが、京大大学院のポスドクで古本(京都大学生存圏研究所助教授、メトロウェザー取締役)の元を訪れてから、風に着目するようになりました。よくよく考えてみると、ゲリラ豪雨は夏の入道雲みたいな雲が急にわいてきて雨が降る。今もそうですが、当時はレーダーで予測できるといっても、10分前が限界で、誰が見ても雲が来ているのが見える。雲が急速に集まってくる時というのは、風が集積されて上昇気流ができるから、その風をとらえるともっと早く予測できるのではないかと考えました。あとは、大学の時にもうひとつやっていた研究が、滋賀県の強風だったんです。琵琶湖の西側で山と湖が非常に接近しているところがあって、そこは貨物列車が転覆するくらいの強烈なおろし風が吹くんですね。

杉原:あの風にうまく乗れたら、鳥人間コンテストでも戻ってこられますもんね(笑)。

東:そうそう (笑)。そこで、JR西日本の湖西線の電車がしょっちゅう止まる。その風を解明してほしいということで、共同研究していく中で、「風をとらえる」ということを始めました。最初は風見鶏みたいなものを置いていたのですが、それでは全体像がわからないので、リモートセンシングで測る方法として、海外のドップラー・ライダーを取り寄せてみたんです。それまで大学ではレーダーで風をとらえていたのですが、電波の場合は、どうしても四方八方へ広がることがあって、情報がノイズだらけになってしまう。あとは電波法の規制もあって自由に出せない。ドップラー・ライダーというのは、レーダーではなく光で風をとらえる装置です。でも、琵琶湖側に海外製のドップラー・ライダーを置いてみたら、当時は1キロメートル先もとらえることができなくて。

杉原:1キロ以内といったら、体感のほうが早いですよね。

東:そうなんです。僕は全然ダメだと思っていたら、古本が「自分たちで作ればいい」と言い出したんですね。それが2014年くらいで、2015年の5月にメトロウェザーを立ち上げました。

杉原:従来のものとは全く違うドップラー・ライダーを自社で開発されたということですが、信号処理技術、解析技術などを独自で研究開発されたということでしょうか?

東:そうです。当初は開発に5年もかかるとは思っていませんでした。基本的な原理や構成はレーダーとほぼ同じですし、信号処理の技術も、京大の大型レーダーで培ってきた信号処理技術を応用すれば、さほどハードルは高くないだろうと思って作り始めたのですが、いざ作り始めると、この部品とこの部品の組み合わせはNGとか、この部品とこの部品は相性がいいとか。

杉原:それは材質的な部分ですか?

東:部品メーカー同士の相性などです。どの組み合わせがいいのかは、組み合わせてみなければ分からない部分もあり、そうこうするうちに5年かかってしまいました。幸い、駆け出しのころにNEDO(国立研究開発法人新エネルギー・産業技術総合開発機構)の補助金をいただいたり、「そういうチャレンジングなことをするのなら投資しよう」という投資家さんが現れたので、なんとか乗り切ったという感じです。

風を読む技術を
ドローン社会のインフラに

杉原:ドップラー・ライダーは10キロ圏内であれば、円としてセンシングできるんですか?

東:半径10キロ、条件がよければ15キロくらいの範囲をスキャンできます。もちろん、鏡を使ってレーザーをいろいろな方向に向けて円形にスキャンすることもできますし、斜め上に照射して三次元でとったりすることもできます。

杉原:やはり高い所に設置したほうがいいのでしょうか?

東:はい。見通しがいいところがいいので、おのずと鉄塔の上などがベストになります。

杉原:今、京大の中で研究しているということですが、仮に京都全域をドップラー・ライダーでセンシングするとなると、およそ何台くらい必要ですか?

東:京都盆地の中だったら、4、5台あればいけると思います。ざっくりとですが。

杉原:え? すごい。想像以上に少なかったです。でも、高い建物というだけではなく、障害物というのがキーですよね。これ、機材の大きさはどのくらいですか?

東:去年の3月にローンチしたタイプでだいたい1立方メートルくらい、重量がかなりあって350キロくらいです。ただ、今年の春には一辺が65センチ四方で重さが130キロくらいのものができます。

杉原:すごい。急に開発スピードが上がっていますね。いったん完成した後のスピードは、「今までなんだったんだ?」と思うくらいですよね。僕も開発しているので、わかります。ドップラー・ライダーはどういう場所で活用することになりますか? 企業のビルに業務委託の形で置かせてもらうのか、それとも公共の場所と手を組むのか。

東:最終的には、ドローンがこれからたくさん飛んでいく世界になった時のインフラにしたいと思っています。例えば、電柱や携帯の基地局に置いていきたいのですが、いきなりそこにはいけないので、今は協力してくださるビルオーナーのもとで、ビルの屋上などに置いているケースと、業務提携契約を結んでいるNTTコミュニケーションズ社の遊休鉄塔などを使わせてもらっています。

杉原:このドップラー・ライダーにはセンシングやアルゴリズムなど御社独自の技術があると思うのですが、出口がとても豊かだなと思います。いま東さんがおっしゃられていたドローン社会の到来もそうだと思うのですが、「風を制す」というところの中で、わかりやすいものでは、日本で社会課題になっている都市防災がありますよね。例えば御社のテクロノジーを使ったら、僕らが今こうむっている災害を防げるということはありますか?

東:防災の観点では、やはりゲリラ豪雨の予測ですね。東京の都市には地下空間がいっぱいあります。よく地下鉄の入り口に止水板が置いてありますが、ああいうものを設置するのに10分前予報だと間に合いません。これが30分前だと、なんとか間に合います。そういう形でドップラー・ライダーを使って浸水を防ぐ、なんらかの対策がとれる、というケースはよくお伺いします。

杉原:ゲリラ豪雨の特徴をもった特殊な風の集積ができた時に、それを感知して「あと30分後にゲリラ豪雨が来る可能性は何%くらいです」みたいな予報になるのでしょうか?

東:たぶん、そうなると思います。

杉原:うわあ、すごい。めちゃくちゃ傘が売れそうですね。

都市部で必要になってくる風の情報

杉原:あとはドローンのための風予測ですよね。今は長崎の五島列島など、人のいない場所で実証実験をやっていますが、都市部で飛ばす場合は、風が一番重要な情報といっても過言ではないと思います。

東:おっしゃる通りで、ANAの五島列島での実証実験で弊社のドップラー・ライダーが使用されたのですが、海の上は比較的乱れが少ないんです。都市に入って来た瞬間に、ビルや建物の影響がすごく出てくるので、風の情報が非常に重要になってきます。

杉原:ドローンに関しては、リアルタイムで24時間データを供給しながら、「今、どのルートがいいよ」と提案していくイメージですか?

東:そうですね。建物の情報はそんなに変わるものではないですが、唯一風の情報だけが時々刻々と変わっていくので。24時間365日の観測情報をドローンのオペレーターに提供していく形になると思います。

杉原:ということは、完全にオートメーション化していかないと、遅延が発生してしまうと、情報が全く違うものになってしまうということですね。

東:ええ。我々も今はほぼリアルタイムで風の情報を提供できるようになっていますが、「今の風」をいかに届けるかというのがポイントです。

杉原:具体的にはどのくらいの時期に実用化をめざしていますか?

東:ドップラー・ライダー自体はお客さんのもとに届いている状況で、サービスは今年中にはスタートしたいと思っています。今はユーザーインターフェース部分の開発を急いでいます。

杉原:それはお客さんによってユーザーインターフェースを変えていくということですか?

東:変えていかないといけない。基盤のところは変わらないのですが、どちらかというとドップラー・ライダーを売るというよりは情報を売るイメージです。だんだんITベンチャーチックな感じになっていくと思います。

ポスドクから
ベンチャー起業の前例となりたい

創業メンバーの四人で力と知恵を持ち寄り次のステージを目指すメトロウェザー。(画像元:https://www.metroweather.jp

杉原:最後に今、日本はポスドク問題のようなものも言われていて、研究室で若手が席を確保するのは至難の技だとさえ言われます。その中で、ポスドクの期間終了時に研究職一本で行くのではなく、起業という選択もあるのではないかということを、御社の場合は示されているのかなと感じました。

東:おっしゃる通りで、ポスドクでよく言われるのが「次がない」ということですが、起業する道もあることを示したいというのは、初期のモチベーションとしてはありました。ディープテック系で成功した事例があまりないので、その成功事例の一つになれればいいなと思います。

杉原:僕もすごく興味があります。今日は貴重なお時間をありがとうございました。

東 邦昭(ひがし・くにあき)
メトロウェザー株式会社代表取締役CEO。2009年に京都大学のポスドクに着任後、大気レーダーを用いた乱気流検出・予測技術の開発・高分解能気象予測シミュレーションの開発を行う。民間気象予報会社において2年間の環境アセスメントの実務経験も持つ。2014年にポスドクを辞めた後、1年間の起業準備期間を経て、2015年に古本氏とともに京都大学発スタートアップとしてメトロウェザーを設立。代表取締役。神戸大学博士(理学)・気象予報士。

(トップ画像:https://www.metroweather.jp

(text: HERO X編集部)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー