対談 CONVERSATION

根性論も感情論もいらない。センシングがもたらす、ハラスメントなきスポーツの未来 前編

長谷川茂雄

近年、大きな社会問題になっている数々のハラスメント。とりわけスポーツ界では、監督やコーチと選手間の異常な主従関係や、暴力的な行為が問題視されることが多い。度々メディアでも報じられるこうした歪みの裏側には、記録やパフォーマンスの向上を目指す指導者側の感情的な空回りや、埃をかぶった根性論などが横たわっている。スポーツ科学とセンシングテクノロジーは、それをポジティブなコミュニケーションへと変える。第一人者である長谷川 裕氏をお招きし、編集長・杉原と最新のスポーツ指導の在り方、そして未来について語り尽くしていただいた。

スポーツに直接役立つ科学技術の追求

杉原「まず、スポーツ科学、そしてセンシングというものは、大きく言うとどういうものなのか、簡単にお聞きしたいのですが」

長谷川「スポーツ科学と一口に言っても、細かくはスポーツサイエンスとエクササイズサイエンスという2つがあります。例えば、マラソンランナーがランニングマシンの上で走っている時に呼気を計測しているとしたら、スポーツサイエンティストとエクササイズサイエンティストは、各々違うことをやっているんですよ」

杉原「なかなか違いが難しいですね(笑)」

長谷川「簡単にいうと、スポーツのためにトレーニング技術を開発したり、選手の問題点を発見したり、怪我しない方法を考えたり……、パフォーマンスを向上するための方法を見つけるために、科学的な手法や基礎科学を使っていくのがスポーツサイエンス。そのために筋力や心拍数のみならず、事細かなデータを計測するのがセンシングという技術です。逆にスポーツを使って、身体運動や健康に繋がるような人間のなんらかのしくみを発見するとか、メカニズムがどうなっているのかを調べるのが運動科学、すなわちエクササイズサイエンス。僕自身は、スポーツサイエンティストでありたいと思っています」

杉原「なるほど、長谷川さんは、スポーツに直接役立つ科学的な技術やしくみを研究されているということですね。世間一般が対象ではなく、スポーツに特化した世界がフィールドであると」

長谷川「そうです。でもスポーツに特化した研究というのは、ごく一部のエリート選手のためのものではないか? とよく言われるのですが、私がやっている研究は、一般の方の健康にも役立つんですよ」

杉原「世間一般にも役立つか否かで、正直、大学の研究費も変わってきそうですよね(笑)」

長谷川「確かにそれはあります。かつてアメリカでは、シューズでもギアでも、開発するとなれば、大きな企業から巨額の研究費が調達できたのですが、各々の企業は自分たちで研究所を持つようになりましたから、大学の研究所には、お金が回らなくなってしまいました。製薬会社や医療機関は、今でも肥満対策や高齢者の転倒防止、安全な子供の食事、そういうものに対しては研究費を出してくれますが、それではスポーツの研究はできませんよね」

杉原「そうなると厳しいですね」

日本にスポーツサイエンスは根付いていない?

長谷川「でもヨーロッパのスポーツ科学は、そうではありません。いかにこのチームを勝たせるか? 端的にそういう研究をしています。プロスポーツのチームには研究所があるのが普通です。サッカーでいえば、マンチェスター・ユナイテッドも、チェルシーも、バルサも、研究所では10人以上の専門職がスポーツサイエンスを研究しています。アメリカには、それがないんですよ」

杉原「それはイギリスが中心ですか? それともヨーロッパ全体?」

長谷川「ヨーロッパの国々は、どこもそういう環境が整っていますよ。あとはオセアニアですかね」

杉原「ちなみに日本はどうなんですか?」

長谷川「日本は、そういうことをしているプロスポーツのチームはありません。自分がアドバイザーとして携わったJリーグの(名古屋)グランパスは、2004〜2008年頃にスポーツサイエンスを選手育成に導入しようとしていました。でも残念ながらそのプランは、すぐに変更されましたね」

杉原「そうなんですね。確かにヨーロッパと日本では、スポーツ文化の根付き方も違いますし、スポーツ自体の熱狂度も違います。科学を積極的に使っていこうという動きは、まだ日本には根付きにくいのかもしれません」

長谷川「そうだと思います。これはヨーロッパだけに限らないのですが、スポーツサイエンスが進んでいる地域では、サッカーの試合全体を、スタジアムに設置した8台ぐらいのカメラでカバーして、どのプレーも必ず2台以上のカメラで記録するプロゾーンというシステムがあります。それで計測したデータは、俯瞰で見たアニメーションにして、選手の能力を約4000項目も分析できるんです。自分はそのシステムに魅せられて、イギリスのリーズまで行って交渉して、日本で会社を作って広めようとしました」

杉原「それは画期的なシステムですね」

長谷川「それでサッカーの日本代表にも提案をしました。でも、当時の監督には、“こんなものに頼っている指導者はダメだ”とはっきり言われましたよ。そこで自分も“では、なぜプレミアリーグの全チームがこれを導入しているのですか?” と応戦したのですが、“向こうの選手はこういうものがないと、いうことを聞かないからだろ”と、突き返されました(笑)」

杉原「もう、それは論点が違いますね」

長谷川「そうなんです。日本では、まだまだ監督の存在は絶対で、選手は監督にモノをいうのはおかしいという風潮が根深い。でも、ヨーロッパでもアメリカでも、選手は監督にいろいろと聞いてきます。そういうコミュニケーションを取るときに、感覚論で曖昧な答えをしても選手は納得しませんから、いろいろなセンシングのデータを見せる必要があるんです」

感覚を可視化すれば
すべてがわかりやすくなる

杉原「自分もレース用車いすの開発をしていますが、やはり感覚で話しをされると同じ土俵で話すのが大変。感覚とは、毎日違うものだから難しい。だから感覚を出来る限り可視化して開発していく必要があるといつも感じています」

長谷川「可視化したデータを重視するというのは、スポーツサイエンスと一緒ですね」

杉原「例えば、一緒に開発をしているアスリートが、座っている車いすの“ここが硬い”、“ここがやりにくい”と言ったら、まずスタッフはそれを反映させようとする。でも自分は止めるんです。なぜなら、それって感覚だから。感覚ほど曖昧なものはない。だから計測をして、硬いと感じる原因を探る必要があるんです」

長谷川「確かにそうですよね。本来、データで判断すべきものってことですね」

杉原「はい。そこで僕たちは、モーションキャプチャーや加速度センサー、触覚センサーなどいろいろ使って計測して、アスリートの違和感を可視化するんです。そうすると、“結局、あなたが言ってたのは、このことか!”と、初めてみんなで納得できるようになる」

車いすの開発も、センシングと同様に、計測と可視化がカギを握る。

長谷川「そうそう、そういうことです。それだと選手に問題点がちゃんと伝わりますよね。データを解析して、ノウハウにしていくことも大切ですし。トレーニングも感覚でやっていくと、わかったつもり、できたつもりになる。それが一番よくないです」

杉原「海外のサッカーだと、コーチやマネージャーが、サッカー経験者じゃないケースも多々ありますよね。日本ではまだ少ない気がします。経験の有無だけじゃなくて、指導者は解析がどれだけできるか、それを利用してどれだけいい戦略が練れるのか、そういうところも評価されるべきだと思うんです」

長谷川「ある競技のコーチやスタッフが、その競技の経験者ではない場合、その人が選手から信頼されたり慕われたりすると、その畑で育った指導者は、ものすごく毛嫌いしますよね」

杉原「そうですよね。あとセンシングで選手の状態を常にデータ化しておけば、怪我をしたときにも、壊した身体の状態を過去のデータと照らし合わせられますよね。カルテ共有ができれば、対処も早くなるはずです」

長谷川「確かにそうです。プレミアリーグでも、選手が移籍をしたら、それまでどんなトレーニングをしていたのか、怪我や筋力の状況、スプリントやパワーなどのデータを受け継ぐのが普通です。そうやって選手個々の健康を守って、リーグ全体のレベルを引き上げているわけですよ」

杉原「プレミア全体のレベルが上がったのは、センシングやデータ解析などの技術が反映しているからかもしれないですね。ただ、僕が好きなアーセナルは、いつも怪我人が多いですが、スポーツサイエンスのレベルが低いんですかね(笑)」

長谷川「いやいや、アーセナルの研究レベルは、かなり高いはずですよ(笑)」

後編へつづく

長谷川 裕(はせがわ・ひろし)
1956年京都府生まれ。龍谷大学経営学部教授(スポーツサイエンスコース担当)。日本トレーニング指導者協会(JATI)理事。スポーツパフォーマンス分析協会代表理事。エスアンドシー株式会社代表。筑波大学体育専門学群卒業、広島大学大学院教育学研究科博士課程前期終了。龍谷大学サッカー部部長・監督、ペンシルバニア州立大学客員研究員兼男子サッカーチームコンディションコーチ、名古屋グランパスエイトコンディショニングアドバイザー等を経て、スポーツセンシング技術等を利用した科学的トレーニング理論の実践的研究を続ける。著者は『アスリートとして知っておきたいスポーツ動作と体のしくみ』、『サッカー選手として知っておきたい身体の仕組み・動作・トレーニング』ほか多数。

(text: 長谷川茂雄)

(photo: 河村香奈子)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

【HERO X × JETRO】車の「目」はこう変わる!自動運転技術加速を支える新技術

HERO X 編集部

JETROが出展支援する、世界最大のテクノロジー見本市「CES」に参加した注目企業に本誌編集長・杉原行里が訪問。独自のスキャナーとFMCW測定系を組み合わせることで、従来の LiDAR(ライダー)を超える次世代型のLiDARシステム開発に成功した株式会社SteraVision(ステラビジョン)。完全自動運転を実現可能にする独自技術について同社CEOの上塚尚登氏に話しを聞いた。

独自技術で新しい市場価値を創ることをめざす
産総研発のベンチャー企業

杉原:産総研発のベンチャー企業ということですが、具体的にどのようなことをしている会社なのでしょうか。

上塚:産総研(国立研究開発法人産業技術総合研究所)というのは、日本に3組織しかない特定国立研究開発法人の一つで、茨城県つくば市にあるつくば本部エリアにあるのですが私たちはその一部にある4部屋を借りて、研究・開発に取り組んでいます。本社は産総研の隣にあって、つくば市が運営するインキュベーション施設(株式会社つくば研究支援センター内つくば創業プラザ)のシェアオフィスを借りているんです。

左「HERO X」編集長・杉原と右SteraVision CEO・上塚氏

杉原:設立は最近ですか?

上塚:2016年12月です。産総研で培われた光通信技術を応用して、独自方式の光ビームステアリングデバイスと、FMCW方式の測定システムを組み合わせた次世代型LiDAR(Light Detection and Ranging:光による検知と測距)の開発と製造販売をやっています。製品としては、“Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”があります。

車の中でお酒も飲めるし仕事もできる、
完全運転をめざす

上塚:Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”は、独自に開発した、これまでにない新しい形のスキャナーです。これによって我々がめざすのは完全自動運転の実現です。

杉原:一般の車でも、最近はアクセルを離しても設定した速度のまま走り続けるクルージング機能や、車間距離を保ってくれる機能など、自動運転にかなり近づいていますが、ステラビジョンではそれをさらに進化したものにする技術を開発中だと伺いました。実際のところ、今、一般的な車両についているものは、まだ自動運転と言えるものではないですよね。

上塚:そうですね。ご指摘の通り、ドライブアシストと完全自動運転はかなり異なります。自動運転のレベルには0から5までがあり、レベル2まではドライブアシストです。ここでは事故が起きたときはドライバーが責任を持ちます。それに対して完全自動運転では、人が運転することはなく、車の中でお酒も飲めるし仕事もできるといった、新たな価値も生まれます。その一方で、事故が起ればシステムが全ての責任をもたなければなりません。

杉原:レベル4くらいを開発目標にしている、というのが世の中の潮流でしょうか。

上塚:そうですね。我々が目指すのは「完全」自動運転、つまりレベル5ということになります。実は自家用車の完全自動運転は伸び悩んでいて、どこが伸びているかというとトラックの完全自動運転です。コロナ禍で買い物へ行かなくなった代わりに、在宅で注文する機会が増え、輸送用トラックの出荷台数が凄い勢いで伸びている。そんな中で、トラックの完全自動運転、特に高速道路の完全自動運転のニーズが増加しています。ドライバーの身体的負担を減らすだけではなく、燃費も良くなります。ガソリンが高騰していることもあり、アメリカでは本当によく伸びているんですよ。

杉原:なるほど。そして、ズバリ、御社の製品の強みはどのあたりになるのでしょうか?

上塚:我々のLiDARは、大きくふたつの技術を持っておりまして、ひとつがスキャナーです。LiDARというのは、光の方向を見ながら戻ってきた光で、距離と速度も求めることができるというシステムです。その距離と速度を求めるために、我々は光の波の性質を利用する『FMCW(Frequency Modulated Continuous Wave radar:周波数変調連続波レーダー』という方式を採用しています。これを利用して「完全自動運転」に必要な“目”を作ろうというのが我々の目標です 。

距離を測るLiDARの方式としてはToF(Time Of Flight:光の飛行時間)というのが主流なので、LiDARのスタートアップは、アメリカを中心に世界で百数十社がある中で、ほとんどがToFを採用しています。これは光の粒の性質を利用して光を外に出して、戻ってきた光の粒をカウントするという方式で、光が戻る時間から距離や速度を求めるやり方です。光は1秒間に地球を7周半するのですが、実は我々から見ると光の速度は非常に遅い。というのも、戻ってくるのにだいたい1マイクロ秒かかるからです。つまり、300メートルくらい先へ行くのに1マイクロ秒も必要ということです。往復で2マイクロ秒かかる。エレクトロニクスで言うと2マイクロ秒は遅いんです。ですから、我々は別の方法を考えたのです。

また、ToFは太陽や対向車からの光の影響を非常に受けやすいという問題もあります。そのため、ToFは「ドライブアシスト」のために用いることはできるのですが、我々が目指す更に高いレベルの「完全自動運転」には向かない。

杉原:それで、新技術を開発しているということですね。

上塚:はい。産総研で培われた光通信技術を応用して、光ビームによる FMCW方式の測定系を開発しました。これにより、見たいところ(必要なところ)を好きなだけ詳しく“見る”(ワープスキャン)ができるようになりました。

ワープスキャンを使うと運転に必要な情報だけを見られるようになる。

杉原:2016年に上塚さんとCTOの所武彦さんで創業されたということですが、2人は元々ライダーやセンサーに関する研究をされていたんですか?

上塚:我々のヒストリーは、実は光通信部隊なんです。私は光通信のデバイスなどの分野をやっていて、2019年に入社した所は光トランシーバー関係の開発をしていました。実はFMCWというのは光通信のデジタルコヒーレント通信とほとんど同じなんです。だからそのまま進んでいたら、非常にうまくいったんです。

杉原:なるほど。そこから、ToFのほうが世界的な潮流として使われていたけどもFMCW が来るだろうと踏んだということですよね。重複するかもしれませんが、従来のLiDARとの大きな違いはどのあたりになるのでしょうか。

上塚:我々はLiDAR単独ではなく、カメラと組み合わせることで、たとえば運転中の、物体が右から左へ、前から後ろにくるという動きに合わせて、必要なところを詳しくスキャンできます。ここが我々の優位性です。

カメラは全体を見るのは優れていますが、無駄な情報を省き、いかに効率化するか、つまり「見たいところだけ見る」というのが我々の会社のスローガンです。運転中に必要なのは、運転に必要な情報だけです。空とか地面とか見ても仕方がない。無駄な情報もすべて処理すると、コンピュータパワーも使いますし、エネルギー的にも無駄が多いんです。

杉原:車にスーパーコンピュータを積むわけにいきませんからね。これはすごいですね、面白いですね。

上塚:対象が人なのか猫なのか、ボールなのかは、ディープラーニングで物体認識もできます。たとえば人とか車とか、衝突の危険性があるものはまずカメラで認識します。そうすると、その右側にあるステラビジョンのLiDARで実際の距離を測り、情報を色で表します。距離により色分けをして、赤だと遠い、青だと近い、緑が中間ぐらい。そして、それが「車」か「人」だとなったら、そこまでの距離により衝突する可能性があるかどうかを判断、危ない場合はブレーキをかける。運転に必要最低限の情報さえ取り込めれば、これだけのことができます。データ処理を極限まで減らし、重要な物は見落とさない独自の技術があるため、車だけでなく、健康医療分野への応用にも期待がかかっているところです。

杉原:僭越ながら、僕がとても刺さったのは、データの重さが全く変わるところです。軽くなるから情報を処理するスピードも上がるわけですよね。

上塚:それです! まさにその通りです! 要は自動運転といっても、ある程度車のスピードを上げられなければ意味がない。車が速く動けば、それだけ早く情報が上がってこないと、事故につながりかねない。そうなるとやはり情報は高速でほしいわけです。ただし、それを全画面の全距離を無限で測るとしたら、それはスーパーコンピュータの処理が必要です。このようにデータ処理を極限まで減らし、ただし重要な物は見落とさないというのが重要なのです。

杉原:素晴らしいです。僕らの目にも欲しいですね。

上塚:人間の目はそもそもそういうことをやっているんです。景色を見ているけど見てるのは自分の関心があるところだけだし、目に入った情報のすべてを脳は処理していませんよね。

杉原:そのとおりですね。

上塚:それを、実際のコンピュータやLiDAR、光学センサーを使って実現しましょうというのが我々のコンセプトである「見たいところを見る」ということです。

杉原:今回はCESにも出展されていますが、反響はありましたか?

上塚:はい。今引き合いがいっぱいあって、独自性を非常に高く評価してくださる方が多いですね。アメリカから来た方や、駐在の方も来られましたので話をして、海外の方からも是非取り入れたいと言っていただきました。

杉原:自動運転のレベル4レベル5の話もそうですし、健康データだったり、様々なものも含めて世の中を大きく変えていける可能性を感じます。

上塚:そうですね。実際に、健康関係のところからも引き合いはあります。

杉原:個人的にも大変興味深いお話でした。ぜひ御社へ足を運んで、実際に技術を拝見させてください! 今日はありがとうございました。

上塚尚登 (うえつか・ひさと)
1981年東京工業大学を卒業。 専門領域は光デバイス技術。 日立電線(現 日立金属)に入社し,光通信デバイスビジネスを立上げた。 社内ベンチャーのヘッドとして約100億までの部門に成長させた経験を持つ。

関連記事を読む

(text: HERO X 編集部)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー