対談 CONVERSATION

【HERO X × JETRO】車の「目」はこう変わる!自動運転技術加速を支える新技術

HERO X 編集部

JETROが出展支援する、世界最大のテクノロジー見本市「CES」に参加した注目企業に本誌編集長・杉原行里が訪問。独自のスキャナーとFMCW測定系を組み合わせることで、従来の LiDAR(ライダー)を超える次世代型のLiDARシステム開発に成功した株式会社SteraVision(ステラビジョン)。完全自動運転を実現可能にする独自技術について同社CEOの上塚尚登氏に話しを聞いた。

独自技術で新しい市場価値を創ることをめざす
産総研発のベンチャー企業

杉原:産総研発のベンチャー企業ということですが、具体的にどのようなことをしている会社なのでしょうか。

上塚:産総研(国立研究開発法人産業技術総合研究所)というのは、日本に3組織しかない特定国立研究開発法人の一つで、茨城県つくば市にあるつくば本部エリアにあるのですが私たちはその一部にある4部屋を借りて、研究・開発に取り組んでいます。本社は産総研の隣にあって、つくば市が運営するインキュベーション施設(株式会社つくば研究支援センター内つくば創業プラザ)のシェアオフィスを借りているんです。

左「HERO X」編集長・杉原と右SteraVision CEO・上塚氏

杉原:設立は最近ですか?

上塚:2016年12月です。産総研で培われた光通信技術を応用して、独自方式の光ビームステアリングデバイスと、FMCW方式の測定システムを組み合わせた次世代型LiDAR(Light Detection and Ranging:光による検知と測距)の開発と製造販売をやっています。製品としては、“Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”があります。

車の中でお酒も飲めるし仕事もできる、
完全運転をめざす

上塚:Digital FMCW LiDAR”&光ビームステアリングデバイス “MultiPol™”は、独自に開発した、これまでにない新しい形のスキャナーです。これによって我々がめざすのは完全自動運転の実現です。

杉原:一般の車でも、最近はアクセルを離しても設定した速度のまま走り続けるクルージング機能や、車間距離を保ってくれる機能など、自動運転にかなり近づいていますが、ステラビジョンではそれをさらに進化したものにする技術を開発中だと伺いました。実際のところ、今、一般的な車両についているものは、まだ自動運転と言えるものではないですよね。

上塚:そうですね。ご指摘の通り、ドライブアシストと完全自動運転はかなり異なります。自動運転のレベルには0から5までがあり、レベル2まではドライブアシストです。ここでは事故が起きたときはドライバーが責任を持ちます。それに対して完全自動運転では、人が運転することはなく、車の中でお酒も飲めるし仕事もできるといった、新たな価値も生まれます。その一方で、事故が起ればシステムが全ての責任をもたなければなりません。

杉原:レベル4くらいを開発目標にしている、というのが世の中の潮流でしょうか。

上塚:そうですね。我々が目指すのは「完全」自動運転、つまりレベル5ということになります。実は自家用車の完全自動運転は伸び悩んでいて、どこが伸びているかというとトラックの完全自動運転です。コロナ禍で買い物へ行かなくなった代わりに、在宅で注文する機会が増え、輸送用トラックの出荷台数が凄い勢いで伸びている。そんな中で、トラックの完全自動運転、特に高速道路の完全自動運転のニーズが増加しています。ドライバーの身体的負担を減らすだけではなく、燃費も良くなります。ガソリンが高騰していることもあり、アメリカでは本当によく伸びているんですよ。

杉原:なるほど。そして、ズバリ、御社の製品の強みはどのあたりになるのでしょうか?

上塚:我々のLiDARは、大きくふたつの技術を持っておりまして、ひとつがスキャナーです。LiDARというのは、光の方向を見ながら戻ってきた光で、距離と速度も求めることができるというシステムです。その距離と速度を求めるために、我々は光の波の性質を利用する『FMCW(Frequency Modulated Continuous Wave radar:周波数変調連続波レーダー』という方式を採用しています。これを利用して「完全自動運転」に必要な“目”を作ろうというのが我々の目標です 。

距離を測るLiDARの方式としてはToF(Time Of Flight:光の飛行時間)というのが主流なので、LiDARのスタートアップは、アメリカを中心に世界で百数十社がある中で、ほとんどがToFを採用しています。これは光の粒の性質を利用して光を外に出して、戻ってきた光の粒をカウントするという方式で、光が戻る時間から距離や速度を求めるやり方です。光は1秒間に地球を7周半するのですが、実は我々から見ると光の速度は非常に遅い。というのも、戻ってくるのにだいたい1マイクロ秒かかるからです。つまり、300メートルくらい先へ行くのに1マイクロ秒も必要ということです。往復で2マイクロ秒かかる。エレクトロニクスで言うと2マイクロ秒は遅いんです。ですから、我々は別の方法を考えたのです。

また、ToFは太陽や対向車からの光の影響を非常に受けやすいという問題もあります。そのため、ToFは「ドライブアシスト」のために用いることはできるのですが、我々が目指す更に高いレベルの「完全自動運転」には向かない。

杉原:それで、新技術を開発しているということですね。

上塚:はい。産総研で培われた光通信技術を応用して、光ビームによる FMCW方式の測定系を開発しました。これにより、見たいところ(必要なところ)を好きなだけ詳しく“見る”(ワープスキャン)ができるようになりました。

ワープスキャンを使うと運転に必要な情報だけを見られるようになる。

杉原:2016年に上塚さんとCTOの所武彦さんで創業されたということですが、2人は元々ライダーやセンサーに関する研究をされていたんですか?

上塚:我々のヒストリーは、実は光通信部隊なんです。私は光通信のデバイスなどの分野をやっていて、2019年に入社した所は光トランシーバー関係の開発をしていました。実はFMCWというのは光通信のデジタルコヒーレント通信とほとんど同じなんです。だからそのまま進んでいたら、非常にうまくいったんです。

杉原:なるほど。そこから、ToFのほうが世界的な潮流として使われていたけどもFMCW が来るだろうと踏んだということですよね。重複するかもしれませんが、従来のLiDARとの大きな違いはどのあたりになるのでしょうか。

上塚:我々はLiDAR単独ではなく、カメラと組み合わせることで、たとえば運転中の、物体が右から左へ、前から後ろにくるという動きに合わせて、必要なところを詳しくスキャンできます。ここが我々の優位性です。

カメラは全体を見るのは優れていますが、無駄な情報を省き、いかに効率化するか、つまり「見たいところだけ見る」というのが我々の会社のスローガンです。運転中に必要なのは、運転に必要な情報だけです。空とか地面とか見ても仕方がない。無駄な情報もすべて処理すると、コンピュータパワーも使いますし、エネルギー的にも無駄が多いんです。

杉原:車にスーパーコンピュータを積むわけにいきませんからね。これはすごいですね、面白いですね。

上塚:対象が人なのか猫なのか、ボールなのかは、ディープラーニングで物体認識もできます。たとえば人とか車とか、衝突の危険性があるものはまずカメラで認識します。そうすると、その右側にあるステラビジョンのLiDARで実際の距離を測り、情報を色で表します。距離により色分けをして、赤だと遠い、青だと近い、緑が中間ぐらい。そして、それが「車」か「人」だとなったら、そこまでの距離により衝突する可能性があるかどうかを判断、危ない場合はブレーキをかける。運転に必要最低限の情報さえ取り込めれば、これだけのことができます。データ処理を極限まで減らし、重要な物は見落とさない独自の技術があるため、車だけでなく、健康医療分野への応用にも期待がかかっているところです。

杉原:僭越ながら、僕がとても刺さったのは、データの重さが全く変わるところです。軽くなるから情報を処理するスピードも上がるわけですよね。

上塚:それです! まさにその通りです! 要は自動運転といっても、ある程度車のスピードを上げられなければ意味がない。車が速く動けば、それだけ早く情報が上がってこないと、事故につながりかねない。そうなるとやはり情報は高速でほしいわけです。ただし、それを全画面の全距離を無限で測るとしたら、それはスーパーコンピュータの処理が必要です。このようにデータ処理を極限まで減らし、ただし重要な物は見落とさないというのが重要なのです。

杉原:素晴らしいです。僕らの目にも欲しいですね。

上塚:人間の目はそもそもそういうことをやっているんです。景色を見ているけど見てるのは自分の関心があるところだけだし、目に入った情報のすべてを脳は処理していませんよね。

杉原:そのとおりですね。

上塚:それを、実際のコンピュータやLiDAR、光学センサーを使って実現しましょうというのが我々のコンセプトである「見たいところを見る」ということです。

杉原:今回はCESにも出展されていますが、反響はありましたか?

上塚:はい。今引き合いがいっぱいあって、独自性を非常に高く評価してくださる方が多いですね。アメリカから来た方や、駐在の方も来られましたので話をして、海外の方からも是非取り入れたいと言っていただきました。

杉原:自動運転のレベル4レベル5の話もそうですし、健康データだったり、様々なものも含めて世の中を大きく変えていける可能性を感じます。

上塚:そうですね。実際に、健康関係のところからも引き合いはあります。

杉原:個人的にも大変興味深いお話でした。ぜひ御社へ足を運んで、実際に技術を拝見させてください! 今日はありがとうございました。

上塚尚登 (うえつか・ひさと)
1981年東京工業大学を卒業。 専門領域は光デバイス技術。 日立電線(現 日立金属)に入社し,光通信デバイスビジネスを立上げた。 社内ベンチャーのヘッドとして約100億までの部門に成長させた経験を持つ。

関連記事を読む

(text: HERO X 編集部)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

人の走りを可視化したスマートシューズがアスリートを変える!?「ORPHE TRACK」開発者・菊川裕也が見る夢 前編

吉田直子

センシング技術を組み込んだスニーカーを履くことで、自分の歩行や走りをスマートフォンやタブレット上で簡単に計測・分析できるスマートシューズ「ORPHE TRACK 」。企画・開発したのは株式会社no new folk studioの菊川裕也氏だ。「楽器のような靴を作りたい」という発想から生まれたスマートシューズが、いかにプロダクトとして成熟していったのか。アメリカのクラウドファンディングサイトで$110,000以上の資金を調達し、2016年に一般販売されるまでの経緯と、「ORPHE」シリーズに込められた菊川氏の哲学を、編集長・杉原が伺った。

楽器づくりから始まった
「ORPHE」シリーズ

杉原:実は僕、菊川さんの講演会には何度も行っています。「ORPHE」もかなり早い段階で注目していました。まずは、開発のきっかけからお伺いしたのですが。

菊川:そもそも大学は文系で、どちらかというと商学部よりも軽音楽部に通っていたような大学生活でした。音楽が好きだったのですが、普通の音楽がやりたいわけではなく、楽器から作りたかったんですね。それで、首都大学東京の大学院で芸術工学を専攻して、単位取得をした頃にはこの会社を立ち上げていました。大学院の時に一番時間をかけて作ったのが、目の見えないユーザーが使える電子楽器。ユニットを押したり、つかんだりすることで音が鳴る楽器です。直感的なインターフェースというと電子楽器やDJが思い浮かびますが、DJといっても、音とジェスチャーが本当に1対1で対応しているかわからないじゃないですか?

杉原:確かにそうですね。DJは直感的なインタラクションというけれど、レコードを回すマネだけをしているかもしれない。

菊川:テクノロジーの進化によってインターフェースのデザインの幅が広がって、時代的にも音とジェスチャーの分離が激しくなってきていたので、逆にそれがつながる意味を考えていました。その後、サントリーさんの「響」というウイスキーのプロモーションで、楽器になるコップを作りました。金細工の部分が静電容量センサーになっていて、グラスを持ったらそれがわかる、加速度センサーでグラスの傾きがわかる、唇に触れたらわかる。飲んでいる行為が合奏になるのです。要はもともと知っているものが楽器になると、「これ、飲むものですよ」と言わなくても、人は勝手に飲むんです。

杉原:飲む時にコップを持つというのは当たり前の行為だから、使い方を教えるコミュニケーションやらなくて済んだ、ということですね。

菊川:まさにそうです。どれだけ直感的に作ったとしても、新しいものだったら、説明しなきゃいけない。そこで、真新しい楽器を作るよりは、すでにあるものが楽器になっていくことをやったほうが、あらゆる人を演奏者に変えられると思いました。靴は本当に誰でも履くので、靴自体が楽器になれば、普段みんなが意識していない、「歩く」「走る」が演奏行為になると思ったんです。

杉原:その発想は面白い!

菊川:最初はシンプルにタップダンスのシューズを電子化することを考えていました。靴は買ってきて、そこにセンサーを付けて、みたいなことを1人で夜な夜なやっていたら、じょじょに「面白い」「製品化したら?」と言ってくれる人が出てきて、一部を出資してもらってクラウドファンディングまで持っていくことになった。それが会社設立の経緯です。

スマートシューズ市場が
思ったよりなかった

杉原:これ、出た時は覚えていますよ。すごく欲しいと思いました。

菊川:ありがとうございます。この時点ではあまりモノ作りの制約を抱えていなかったので、こういうものがあったら楽しいよねという素直な気持ちに基づいて作られています。

杉原:濁りがないですよね。僕も車いすが最初に出来た時の喜びはいまだに色あせないのですが、今モビリティを作るときには、「これ量産は無理だな」とか、「ここをちょっと変えなきゃダメだな」とか、少しずつ加点より減点になっていく。そこを、いかに食い止めるかが課題ですよね。

菊川:本当にそうですね。とはいえ、ちゃんと量産して販売するところまで、それほどお金をかけずに達成できたことは、今でもノウハウとして引き継がれています。スマートシューズ系で大風呂敷を広げたところは、わりと出す前に破綻したりしていますから。

杉原:最初のスマートシューズの時代を振り返った時に、今も残っている考え方やテクノロジーというのは、何かありますか。量産のノウハウと、あとは?

菊川:いや、全部残ってはいます。プロダクトとして成立しやすい部分を抽出して、製品になっているのですが、成立しにくい部分も別に捨てたつもりはなくて、多分戻ってくると思います。ただ、思ったよりもモノ作りの世界の発展がスローでしたね。スマートシューズに関しては2014年くらいから考えているから、クラウドファンディングが終わる頃には、ランニング系のスマートシューズなんて世の中で当たり前になっているはずだと思っていました。だから、もっとニッチな、ダンスに特化したものでないと売れないと思っていたんです。でも、2020年でも、全然当たり前になっていなかった。

杉原:わかりますね。オリパラが決まった時に、大企業もスタートアップもみんな色々な風呂敷を広げたじゃないですか? でも、2020年になった今、予想よりはプロダクトが出てこないですもんね。想像以上にあまり変わっていないというのが自分の中の認識です。

菊川:打ち出すことはできても、実際に新規性が高いことをやる場合って、当然障害があるわけじゃないですか? それをちゃんとやりきる人は、実はかなり少ないですよね。

ランナーのためのシューズを
新しく開発

杉原:2015年に発表して「Indiegogo」(サンフランシスコを拠点にするクラウドファンディングサイト)で資金調達したんですよね?

菊川:そうです。それをもとに製品を開発することができました。その先の話をすると、僕らの場合、一般のコンシューマにどんどん市場が広がっていったというよりも、むしろ様々な場でコンテンツとして使ってもらえたことが大きかったですね。例えばAKB48さんや乃木坂46さんのライブに使ってもらったり、21世紀美術館での展示や、TVCMにも使ってもらったり。ちょっと目新しいものとして話題になったことで、ほかの仕事にもつながっていきました。

杉原:2015、2016年からプロモーションをやってきて、今の活動は、会社としてはどういう主軸になっていますか?

菊川:主軸はスマートランニングシューズの開発ですね。アプリをオープンにするというのは最初から思想的にはあったので、3年間くらい、SDKを無償配布して、大学とかに使ってもらったりしていました。そういう中で、為末大さんとも出会って、「ORPHE」を最初に見せた瞬間に、「子どものランニングの教育に使いたい」と言ってもらえたんです。パンと踏んだ瞬間に音と光が出るので、しかも、もともとタップダンスの動きを模していたこともあって、かかとから着地するのと爪先で着地するのでは音色が変わるようになっていた。IoTというとデータだけ貯まっていけばあとはなんとかなる、みたいなところに行きがちですが、僕たちの場合はデータを録るというのと、即自的なフィードバックの両方をやっています。フォームを変えるみたいな、その人にとって直接ベネフィットがあるようなタイプのことが得意だなと思っていたのと、為末さんというのもあったので、そこでランニングフォームを見えるようにして、「ORPHE TRACK」にたどりついたという形ですね。

ランニングフォームを分析できるスマートフットウェア「ORPHE TRACK」。スマホアプリと連動し、今まで大がかりな設備でしか計測できなかった「着地」「プロネーション」「左右バランス」も解析できる。2019年発売。

引用元 https://nonewfolk.shop/

杉原:やっぱりコミュニケーションというか、伝え方にすごくこだわっていますね。

菊川:そうでしょうね。もともと会社自体は表現行為だと思ってやっているので。

杉原:うん、うん。

菊川:とはいえ、2016年に発売した「ORPHE ONE」はわりと漠然とやりたいことをやっているのに対して、「ORPHE TRACK」という世代では、きちんとこの技術が欲しい人たちに伝えることを意識しています。いろいろ調査したのですが、特にランナーの中でも、着地は、なかなか変えられないんです。勉強するけれど、そもそも自分がどうなっているかよくわからないというのがあって。

杉原:それを音で知らせてくれたり、光で知らせてくれたりしたら、フォームの直し方がわかりやすいですよね。

菊川:はい、全然違いますね。あとはセンサーと靴を切り離したというのは大きいです。前のモデルは全部スマートシューズだったので、一部が壊れたら全部替えないといけなかったのですが、ORPHE TRACKではセンサーと靴を分離しました。また、センサーとしては同じような仕組みですが、中のアルゴリズムはめちゃくちゃ進化させていて、履いているだけで歩幅や速度や角度など、ひとつひとつのデータを切り出せるようなアルゴリズムを社内で開発しています。

杉原:すごいな、このアルゴリズムは。結構変数が多いですよね?

「ORPHE」のアプリUIを見て、驚く杉原編集長。データを見ながら練習することでランナーの着地改善なども容易になる

菊川:センシング自体はシンプルで、アウトソールの真ん中に3軸加速度センサとジャイロセンサを置くというだけです。でも、そのほうがスケールしやすい。で、それを料理するアルゴリズムの部分をがんばって開発しているという感じです。

<後編へ続く>

菊川裕也(きくかわ・ゆうや)
1985年、鳥取県出身。一橋大学 商学部 経営学科を卒業後、首都大学東京大学院芸術工学研究科に進学。音楽演奏用のインターフェース研究・開発を行う。視覚的インターフェース「PocoPoco」が、アジアデジタルアート大賞優秀賞を受賞。その後、スマートシューズ「ORPHE ONE」を開発し、2014年10月にno new folk studioを設立。クラウドファンディングでの資金調達に成功し、「ORPHE ONE」を量産化する。2019年7月よりランナー向けシューズ「ORPHE TRACK」を発売。

(text: 吉田直子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー