対談 CONVERSATION

人の走りを可視化したスマートシューズがアスリートを変える!?「ORPHE TRACK」開発者・菊川裕也が見る夢 前編

吉田直子

センシング技術を組み込んだスニーカーを履くことで、自分の歩行や走りをスマートフォンやタブレット上で簡単に計測・分析できるスマートシューズ「ORPHE TRACK 」。企画・開発したのは株式会社no new folk studioの菊川裕也氏だ。「楽器のような靴を作りたい」という発想から生まれたスマートシューズが、いかにプロダクトとして成熟していったのか。アメリカのクラウドファンディングサイトで$110,000以上の資金を調達し、2016年に一般販売されるまでの経緯と、「ORPHE」シリーズに込められた菊川氏の哲学を、編集長・杉原が伺った。

楽器づくりから始まった
「ORPHE」シリーズ

杉原:実は僕、菊川さんの講演会には何度も行っています。「ORPHE」もかなり早い段階で注目していました。まずは、開発のきっかけからお伺いしたのですが。

菊川:そもそも大学は文系で、どちらかというと商学部よりも軽音楽部に通っていたような大学生活でした。音楽が好きだったのですが、普通の音楽がやりたいわけではなく、楽器から作りたかったんですね。それで、首都大学東京の大学院で芸術工学を専攻して、単位取得をした頃にはこの会社を立ち上げていました。大学院の時に一番時間をかけて作ったのが、目の見えないユーザーが使える電子楽器。ユニットを押したり、つかんだりすることで音が鳴る楽器です。直感的なインターフェースというと電子楽器やDJが思い浮かびますが、DJといっても、音とジェスチャーが本当に1対1で対応しているかわからないじゃないですか?

杉原:確かにそうですね。DJは直感的なインタラクションというけれど、レコードを回すマネだけをしているかもしれない。

菊川:テクノロジーの進化によってインターフェースのデザインの幅が広がって、時代的にも音とジェスチャーの分離が激しくなってきていたので、逆にそれがつながる意味を考えていました。その後、サントリーさんの「響」というウイスキーのプロモーションで、楽器になるコップを作りました。金細工の部分が静電容量センサーになっていて、グラスを持ったらそれがわかる、加速度センサーでグラスの傾きがわかる、唇に触れたらわかる。飲んでいる行為が合奏になるのです。要はもともと知っているものが楽器になると、「これ、飲むものですよ」と言わなくても、人は勝手に飲むんです。

杉原:飲む時にコップを持つというのは当たり前の行為だから、使い方を教えるコミュニケーションやらなくて済んだ、ということですね。

菊川:まさにそうです。どれだけ直感的に作ったとしても、新しいものだったら、説明しなきゃいけない。そこで、真新しい楽器を作るよりは、すでにあるものが楽器になっていくことをやったほうが、あらゆる人を演奏者に変えられると思いました。靴は本当に誰でも履くので、靴自体が楽器になれば、普段みんなが意識していない、「歩く」「走る」が演奏行為になると思ったんです。

杉原:その発想は面白い!

菊川:最初はシンプルにタップダンスのシューズを電子化することを考えていました。靴は買ってきて、そこにセンサーを付けて、みたいなことを1人で夜な夜なやっていたら、じょじょに「面白い」「製品化したら?」と言ってくれる人が出てきて、一部を出資してもらってクラウドファンディングまで持っていくことになった。それが会社設立の経緯です。

スマートシューズ市場が
思ったよりなかった

杉原:これ、出た時は覚えていますよ。すごく欲しいと思いました。

菊川:ありがとうございます。この時点ではあまりモノ作りの制約を抱えていなかったので、こういうものがあったら楽しいよねという素直な気持ちに基づいて作られています。

杉原:濁りがないですよね。僕も車いすが最初に出来た時の喜びはいまだに色あせないのですが、今モビリティを作るときには、「これ量産は無理だな」とか、「ここをちょっと変えなきゃダメだな」とか、少しずつ加点より減点になっていく。そこを、いかに食い止めるかが課題ですよね。

菊川:本当にそうですね。とはいえ、ちゃんと量産して販売するところまで、それほどお金をかけずに達成できたことは、今でもノウハウとして引き継がれています。スマートシューズ系で大風呂敷を広げたところは、わりと出す前に破綻したりしていますから。

杉原:最初のスマートシューズの時代を振り返った時に、今も残っている考え方やテクノロジーというのは、何かありますか。量産のノウハウと、あとは?

菊川:いや、全部残ってはいます。プロダクトとして成立しやすい部分を抽出して、製品になっているのですが、成立しにくい部分も別に捨てたつもりはなくて、多分戻ってくると思います。ただ、思ったよりもモノ作りの世界の発展がスローでしたね。スマートシューズに関しては2014年くらいから考えているから、クラウドファンディングが終わる頃には、ランニング系のスマートシューズなんて世の中で当たり前になっているはずだと思っていました。だから、もっとニッチな、ダンスに特化したものでないと売れないと思っていたんです。でも、2020年でも、全然当たり前になっていなかった。

杉原:わかりますね。オリパラが決まった時に、大企業もスタートアップもみんな色々な風呂敷を広げたじゃないですか? でも、2020年になった今、予想よりはプロダクトが出てこないですもんね。想像以上にあまり変わっていないというのが自分の中の認識です。

菊川:打ち出すことはできても、実際に新規性が高いことをやる場合って、当然障害があるわけじゃないですか? それをちゃんとやりきる人は、実はかなり少ないですよね。

ランナーのためのシューズを
新しく開発

杉原:2015年に発表して「Indiegogo」(サンフランシスコを拠点にするクラウドファンディングサイト)で資金調達したんですよね?

菊川:そうです。それをもとに製品を開発することができました。その先の話をすると、僕らの場合、一般のコンシューマにどんどん市場が広がっていったというよりも、むしろ様々な場でコンテンツとして使ってもらえたことが大きかったですね。例えばAKB48さんや乃木坂46さんのライブに使ってもらったり、21世紀美術館での展示や、TVCMにも使ってもらったり。ちょっと目新しいものとして話題になったことで、ほかの仕事にもつながっていきました。

杉原:2015、2016年からプロモーションをやってきて、今の活動は、会社としてはどういう主軸になっていますか?

菊川:主軸はスマートランニングシューズの開発ですね。アプリをオープンにするというのは最初から思想的にはあったので、3年間くらい、SDKを無償配布して、大学とかに使ってもらったりしていました。そういう中で、為末大さんとも出会って、「ORPHE」を最初に見せた瞬間に、「子どものランニングの教育に使いたい」と言ってもらえたんです。パンと踏んだ瞬間に音と光が出るので、しかも、もともとタップダンスの動きを模していたこともあって、かかとから着地するのと爪先で着地するのでは音色が変わるようになっていた。IoTというとデータだけ貯まっていけばあとはなんとかなる、みたいなところに行きがちですが、僕たちの場合はデータを録るというのと、即自的なフィードバックの両方をやっています。フォームを変えるみたいな、その人にとって直接ベネフィットがあるようなタイプのことが得意だなと思っていたのと、為末さんというのもあったので、そこでランニングフォームを見えるようにして、「ORPHE TRACK」にたどりついたという形ですね。

ランニングフォームを分析できるスマートフットウェア「ORPHE TRACK」。スマホアプリと連動し、今まで大がかりな設備でしか計測できなかった「着地」「プロネーション」「左右バランス」も解析できる。2019年発売。

引用元 https://nonewfolk.shop/

杉原:やっぱりコミュニケーションというか、伝え方にすごくこだわっていますね。

菊川:そうでしょうね。もともと会社自体は表現行為だと思ってやっているので。

杉原:うん、うん。

菊川:とはいえ、2016年に発売した「ORPHE ONE」はわりと漠然とやりたいことをやっているのに対して、「ORPHE TRACK」という世代では、きちんとこの技術が欲しい人たちに伝えることを意識しています。いろいろ調査したのですが、特にランナーの中でも、着地は、なかなか変えられないんです。勉強するけれど、そもそも自分がどうなっているかよくわからないというのがあって。

杉原:それを音で知らせてくれたり、光で知らせてくれたりしたら、フォームの直し方がわかりやすいですよね。

菊川:はい、全然違いますね。あとはセンサーと靴を切り離したというのは大きいです。前のモデルは全部スマートシューズだったので、一部が壊れたら全部替えないといけなかったのですが、ORPHE TRACKではセンサーと靴を分離しました。また、センサーとしては同じような仕組みですが、中のアルゴリズムはめちゃくちゃ進化させていて、履いているだけで歩幅や速度や角度など、ひとつひとつのデータを切り出せるようなアルゴリズムを社内で開発しています。

杉原:すごいな、このアルゴリズムは。結構変数が多いですよね?

「ORPHE」のアプリUIを見て、驚く杉原編集長。データを見ながら練習することでランナーの着地改善なども容易になる

菊川:センシング自体はシンプルで、アウトソールの真ん中に3軸加速度センサとジャイロセンサを置くというだけです。でも、そのほうがスケールしやすい。で、それを料理するアルゴリズムの部分をがんばって開発しているという感じです。

<後編へ続く>

菊川裕也(きくかわ・ゆうや)
1985年、鳥取県出身。一橋大学 商学部 経営学科を卒業後、首都大学東京大学院芸術工学研究科に進学。音楽演奏用のインターフェース研究・開発を行う。視覚的インターフェース「PocoPoco」が、アジアデジタルアート大賞優秀賞を受賞。その後、スマートシューズ「ORPHE ONE」を開発し、2014年10月にno new folk studioを設立。クラウドファンディングでの資金調達に成功し、「ORPHE ONE」を量産化する。2019年7月よりランナー向けシューズ「ORPHE TRACK」を発売。

(text: 吉田直子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

“アフターコロナ”でどう変わる⁉ 情報学から考える モビリティの現在地とこれから

長谷川茂雄

コロナ禍は、果たして世界の秩序や価値観を大きく変えたのだろうか? その答えは現時点では明言できないが、間違いなく人類はこの“わざわい”の先にある世界を具体的にイメージし始めている。今回の特集のテーマであるモビリティの在り方もそのひとつだ。移動は人類にとっての根源的な行為であるし、そのためのツールであるモビリティは、常にライフスタイルと直結している。ゆえに「アフターコロナ」は、それに見合った新たなモビリティが求められるはずだ。その最適解を導き出すための冷静な視点とガイドラインを、日本におけるコンピューターサイエンス研究の第一人者、佐藤一郎氏に伺った。

いまはモビリティの
定義が変わる転換期

近年、AIや自動運転といった技術面での進歩に注目が集まり、“快適な移動”をもたらすツールであるモビリティに対しては、期待値がかなり高まっていた。

ところが、誰も予想できなかった新型コロナウイルスの感染拡大を受け、その描いた未来をデザインしなおす必要が出てきた。

まずは、これから移動そのものはどうなるのかを捉える必要があるが、そもそも移動には、人と物(物流)の2種がある。両者はどのように変化したのだろうか?

「新型コロナウイルスで、移動というものはかなり制約される状況になりましたし、人の移動に関しては、いかに移動そのものを“させない”かを考える必要も出てきました。これからは、その2つのテーマが並存して進んでいくはずです。モビリティの定義そのものがちょうど変わる、いわば変わり目にいると言えます」

オンラインによる働き方もある程度浸透してきた現在、確かに人は積極的に“移動しない”ようになった。それゆえ、モビリティを使った人の移動を佐藤氏は、「物の移動と分けて考えられなくなった」という。では、物の移動はどうなるのか?

「人の移動が減る分、逆に物の移動は増えます。いわゆるECのような形で多くの人が物を買い、宅配便は増えています。巷で話題になっているウーバーイーツのように、専門物流業者以外に物流を担う人もたくさん出てきています。ITが人々の時間を断片化してきており、普段は別の仕事をしていて、空いた時間に配達の仕事をする人はこれからも増えていくはずで、断片化された空き時間の使い方が、様々な局面で重要となります。あとは、数年おきに注目される“共同物流”もクローズアップされる可能性はあります」

「モビリティの捉え方は、コロナ禍によって大きく変わった」と語る佐藤氏。

共同物流とは、複数の企業が同一のインフラを活用して保管や配送などの作業を行うことだが、コストが削減できる反面、他者に様々な情報が漏れる危険性があったり、業者ごとの細かな要望を共有できないなど問題点も多く、これまでは、長年成功している事例が少ない。

「これからは、ITを駆使して諸問題を解決しながら、コストカットに加えて、環境負荷を軽減する手段として共同物流のメリットを活かそうという流れは出てくるかもしれません。加えて、共同物流は倉庫と小売間といった比較的中距離の物流ですが、例えば東京と大阪間というような長距離でどれだけ効率的に物流を行うか? という課題もあります。トラックだけではなく、鉄道や船など複数の移動手段を使う“モーダルシフト”も、これからより注目される傾向にあります」

東京にはシェアリングと
公共交通の融合型がマッチする

そんな現状を踏まえたうえで、より人の生活に根ざしたモビリティの在り方も考えてみたい。例えば、現在MaaS(マース:Mobility as a Service)という概念がヨーロッパを中心に浸透してきている。マイカー以外のあらゆるモビリティをITでシームレスに結びつけるサービスのことだが、こういう動きは今後加速するといわれる。

例えば、コロナ禍以後、電動自転車などの需要が高まっているという話はよく聞く。身近なところでいえば、シェアサイクルなどのサービスは、日本でもさらに広がっていく可能性はあるのだろうか?

「日本の場合は、東京を見ればわかりますが、基本的に住宅とオフィスが混在していません。海外の都市のようにシェアリング自転車や電動スクーターが浸透するのは難しくなります。シェアリング自転車を例に取ると、東京の場合、朝は多くの人がやや郊外の住宅から最寄駅まで乗っていき、帰りは最寄駅から住宅へと向かいます。そうなると自転車の需要が時間に応じて偏ります。この結果、自転車の再配置の問題が出てきます。

シェアリング自転車置き場には、自転車がなくなってもいけないし、満杯になってもいけませんから、運用事業者はトラックを使って置き場から置き場へ再配置をしなければなりません。表に現れませんが、そこに一番コストがかかるんです。世界の都市で見れば、例えばパリは、住宅とオフィスが混在していますからシェアサイクルは古くから浸透しています。海外の都市におけるビジネスモデルが東京で使えるかというと、そうではないのです」

「世界の別の都市で活用されているモビリティのサービスやシステムが、そのまま日本で適用できるわけではない」。佐藤氏いわく「東京は、公共とシェアの融合を進めるのには有利な街」。

シェアリングモビリティは確かに便利ではあるが、街のスタイルによって向き不向きがあるというのは頷ける。では、日本では、シェアリングの乗り物はまったく向かないか、というとそうではない。公共交通とシェアリングモビリティの“融合型”がマッチするという。

「例えば住宅地ではなく、オフィス街の地下鉄の出入り口の近くに、シェアリング自転車の置き場を作る。そうすると地下鉄を降りたら自転車がすぐ利用できて重宝です。住宅地よりは実現性が高い。その背景は、オフィス街は人々が行き交うので時間に応じた偏りが少ないからです。また、地下鉄駅間は距離が短いことを考慮すると、例えば駅の自転車置き場に自転車が少ない場合は、自転車が残っている隣接する駅まで地下鉄で移動して、そこで自転車を借りるという手法も、地下鉄の事業者と連携すれば可能なはずです。海外でも公共交通とシェアリング自転車の連携は進んでいるとはいえず、東京で先行してみる価値はあるでしょう」

シェアリングと公共のハイブリッドというモビリティとの付き合い方。確かに住宅地とオフィス街が別れていることが多い日本では、それがスマートにフィットしそうだ。ただ、その場合はシェアリングの事業者と公共交通の距離感を今よりも縮めていく必要がある。では、AIに関してはどうだろうか?

ハイブリッド型のシステムを構築したうえで、オフィス街で使うモビリティにAIを搭載して、利便性を上げられないものか?

「モビリティそのものにAIを搭載して、音声で指示を与えて何かをしてもらうとか、自動運転の自転車が駅まで迎えに来てくれるとか、現段階ではそういったパフォーマンスの必要性はあまりない気がします。AIに関しては、ユーザーの意図を事前に予測して、使う自転車を予約してくれるとか、裏方的にユーザーの利便性を高めてくれるような使い方のほうが現実的ではないでしょうか」

自転車や電動スクーターそのもののインテリジェンスを高めるよりも、AIは、“先回り”的なサポート役に使ったほうがより有意義なようだ。さらに自動車においては、安全性のアップデートに使われている。

自動車はモビリティという
システムの一部になる

「これからは、自動車にカメラだけではなく、レーザーを使ったセンサーなどが搭載されるはず。そうなると障害物の発見能力が格段に上がりますから、事故を未然に防ぐ能力も高まります。

さらに、現状の自動運転は、自動車にたくさんセンサーを付けてコンピュータで処理をしていますが、自動車から見える視点には限界がありますから、他の車のカメラを含むセンサー情報も共有できれば、ドライバーの視線を超える視野を得ることになりますし、走る道路そのものにセンサーをつけて情報を共有できれば、さらに安全性は高まります。もはや自動車という閉じた単位ではなくて、それこそモビリティというひとつのシステムの一部が自動車という考え方に変わっていくのだと思います」

「モビリティという大きなシステムが作られるには、難題が多々ある」。それをクリアすることで、人間の生活はさらに大きく変わるのかもしれない。

他のモビリティや道路と連携して情報を共有しながら走るモビリティ。それが未来のモビリティの一つの在り方かもしれない。ただそこにももちろん課題がある。

「街や道路にセンサーを付けるには、それなりのコストがかかります。車の運転のためだけにセンサーを使うのではなく、社会的に他の用途でも使えるようにしなければ、その問題はクリアできません。そしてもっと難しいのは、新規の街ではなく、既存の街の方です。レガシーな場所をどうやってインテリジェント化するのか、ということです。

例えば過去に博物館のスマート化に関する実証実験を、上野の国立科学博物館などでやらせていただきましたが、それは企画展ではなく、既存の展示空間のスマート化でしたが、展示の邪魔をしないことが難題でした。、ショッピングモールなどで景観を損ねずに電源などを確保し、センサーを設置して、コンピュータで制御できるシステムを組み込むことも同じような難しさがあります。複雑に入り組んだ街もそうですし、そもそもそういった場所で、自動運転が可能なのか?という課題もあります」

既存の街や建物、インフラに新しいモビリティというシステムを組み込むことが難しければ、まだ未発達の地域を実験都市的に作り上げるというのも考えられなくはない。

「確かに実験都市というのは、新たなモビリティシステムを作っていくには好都合かもしれません。ただ、そこで得た知見が、既存の街でも応用できるかというと、それは違う部分もあります。また既存の街に関しても、東京などの大都会は複雑すぎます。今後はモビリティの概念が変わったときに都市や街に求められる大きさが違ってくるはず。新しいモビリティを活かすことで、新たな発展を遂げる地域や街が地方から出てくる可能性は、大いにあるのではないでしょうか」

(さとう・いちろう)
国立情報学研究所(NII)・情報社会相関研究系教授。慶應義塾大学理工学部電気工学科卒業。慶應義塾大学大学院理工学研究科計算機科学専攻博士課程修了。博士(工学)。お茶の水女子大学理学部情報学科助教授、国立情報学研究所助教授等を経て、2006年より現職。ほかにランク・ゼロックス客員研究員(1994〜1995年)、科学技術振興事業団さきがけ21研究員(1999〜2002年)等を務める。仮面ライダーゼロワンのAI技術アドバイザー(2019年)としても知られる。

(text: 長谷川茂雄)

(photo: 壬生真理子)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー