医療 MEDICAL

聴診器が200年ぶりに進化!?遠隔医療にも革新をもたらす「超聴診器」

下西 由紀子 | Yukiko Shimonishi

病院や健康診断の場で、医師から聴診器による診察を受けた経験は誰もがもっているだろう。丸い金属をペタペタと皮膚にあてられ、ゴムのチューブ伝いに心音や呼吸音を聴いてもらうというのがおなじみのスタイル。実は聴診器の造りそのものは、200年もの間、変化しておらず、診断は診察にあたる医師の耳に委ねられている。しかし、その歴史を塗り替える画期的な聴診器が実用化されつつある。その名も「超聴診器(自動診断アシスト機能付遠隔対応聴診器)」だ。

困難だった心音の可視化に成功。
大動脈弁狭窄症の早期発見を可能に

「聴診」とは、字のごとく、医師が耳で心音や呼吸音を確認し、診察を行うもの。しかし、実際には、その聴こえ方や医師の経験によって、診断にズレが生じることもあり得る。周りに雑音の多い集団健診なら、なおさら些細な異常を捉えることは難しいに違いない。AMI株式会社が開発をすすめる「超聴診器」は、心音をデータ化し、可視化することで、医師の診断をアシストするという画期的な機器なのである。

「超聴診器」のプロトモデルの数々。臨床研究を重ねながら改良を続けている。

特徴は、心音と心電を合成し、周波数と音圧、時間の3軸による解析を行うという点だ。実は心音をデータ化するという発想は過去にもあったが、心音を呼吸音や周囲の雑音と切り分けることが難しく、自動診断を補助するというレベルには達していなかった。AMI社では、心音を心筋活動電位の発生タイミングと同期させることで、音の切り分けに成功。純粋な心音の解析を可能にした。これをデータとして可視化することで、環境や医師の経験等にかかわらず、安定した解析結果を視覚的に確かめることができるというもの。これにより、心臓の専門医でなくても、異変に気づくことが可能にもなる。重さは約500gと軽量、皮膚にあてる部分は片手に収まる大きさで、胸の中心にあてて約10秒で測定できるという手軽さだ。

「なんとしてでも」と、
若き医師がたった一人で起業

コンパクトな機器を胸にあてるだけ。測定もわずか10秒で終了するので、患者の身体的負担も軽くて済む

 開発したのは、熊本出身の循環器内科医師である小川晋平氏。きっかけは、急性期病院勤務時代に担当した高齢女性患者の「大動脈弁狭窄症」の治療を経験したことだった。「大動脈弁狭窄症」とは、心臓から血液を送り出すために開閉する「弁」がうまく開かなくなる症状で、原因の多くは加齢によって弁が硬くなってしまうことだという。75歳以上の後期高齢者の有病率は約12%という報告もあり、推定患者数は100万人ともいわれる。自覚症状が出たときはすでに重症化しており、検査も手術も大がかりなものに。気づかずに過ごしていれば、心不全や突然死にもつながり、家族への衝撃も大きい。これは超高齢社会を迎えた我が国にとって重要な課題だ。小川氏は「なんとしてでも早期発見できる診察の方法を」と、「超聴診器」の発想に至ったという。

上段が正常な心音、下段が大動脈弁狭窄症の時のもの。心音の見える化で異常がすぐに分かる。

開発に乗り出したのは、2015年11月、京都大学大学院に研究生として在籍していた時のこと。たったひとりでAMI株式会社を立ち上げた。しかし、アイデアはあったものの、医療機器として製品化するためのノウハウも資金もなかった。大学発のベンチャーではなかったため、自己資金のみでなんとか開発を続けた。2016年、「オムロンコトチャレンジ」で最優秀賞を受賞。その後、医用電子工学の専門家である熊本大学 大学院先端科学研究部 准教授の山川俊貴助教との出会いがあり、開発に関して多大なる協力を得た。2017年には、スタートアップ企業との事業共創を推進するプログラム「KDDI∞ラボ」で最優秀賞を受賞、同年、NEDOの研究開発型ベンチャー支援事業に採択され、資金調達や経営体制の強化を行い、研究開発を加速化していった。

医療現場だけでなく将来的には家庭でも。
一家に一台、目指すイメージは血圧計

開発者の小川晋平氏。循環器内科医と起業家という2つの顔を持つ

 まだ臨床研究の段階だが、2019年度中には心音の可視化に特化した簡易型モデルを発売予定。将来的には、医療現場で使用する機器だけでなく、家庭用モデルの製品化を目指すという。AMI社の執行役員であり、鹿児島市の研究室「Sound Analysis Lab」の代表研究員でもある川原翔太氏は、臨床研究にあたるスタッフの一人。川原氏いわく「自宅で気軽に心音の測定ができたら、自分で異常に気づくことができ、病院で診察を受けてみようという気になるはず。誰でも簡単に扱え、価格も手頃な商品を完成させて、一家に一台普及させたい。イメージは家庭用の血圧計」〝家庭用超聴診器″の役割は、日常的に心音を測定することで、本人や家族に異変をいち早くとらえてもらい、病院での診察や健診へと促すことだという。

独自のビデオチャットシステムで
「クラウド健進」も実施

2018年10月、東京の虎ノ門ヒルズにて。大手企業とのマッチング事業でプレゼンを行う川原翔太氏

現在、AMI株式会社は、熊本県水俣市に本社を構え、熊本大学内と鹿児島市に研究室を設けている。今年6月には京都大学内にも研究室を設ける予定だという。スタッフは約20名になり、医療従事者をはじめ、回路工学や超音波工学、AI、データ分析のエンジニアが在籍。社名「AMI」の由来は「Acute Medical Innovation=急激な医療革新を実現する」。病院以外の場所で生活習慣病の早期発見指導を行い、健康増進及び適切な生活指導・病院受診につなげようと「遠隔医療」にも取り組んでいる。

2018年には、九州ヘルスケア産業推進協議会(HAMIQ)主催の第5回“ヘルスケア産業づくり”貢献大賞で、大賞を受賞。同年、水俣市と連携し、遠隔医療実証プロジェクト「クラウド健進」を開始した。「健進」は造語で「健康増進」の略語だ。特定健康診査(メタボ健診)に沿った内容で、指先採血、身体計測、超聴診器による遠隔聴診と、病院にいる医師によるオンライン受診勧奨とを組み合わせた遠隔医療サービスである。実施する場所は市内の薬局および利用者宅。超聴診器には、遠隔地でもパッドが患者に接触したことを検知する機能を設け、特許も取得済みだ。通信には、同社が開発したビデオチャットシステムを使用。心音を可聴データと可視データに分けたことで、質の高い遠隔聴診を実現できているという。

この1年で会社は急成長。写真は鹿児島の研究室「Sound Analysis Lab」のスタッフ

「忙しい人や高齢者にとって、決められた日に健診会場まで足を運ぶのは負担が大きい。立ち寄りやすい場所で、気軽に健診を受けられるようになったら、より早く異変に気づくことができ、健康増進にも医療費の削減にもつながる」と川原氏。将来的には「超聴診器」に呼吸や血圧などのバイタルデータの計測機能を追加し、呼吸器疾患にも対応していきたいという。

特定健診については、受診率の低さも課題の一つ。川原氏は「遠隔での健診が実現したら、企業健診も変わる。わざわざ病院へ行くより、企業内で受診できたら、受診率も上がり、仕事のロスタイムも減ってぐっと効率的になる」と今後の展望を語る。

「急激な医療革新」と銘打ち、「予防医療・健康増進・医療費削減」を掲げるAMI社。更に高齢化が進むことが確実視されている我が国にとって、急激な救世主となり得るか。今度の動きに期待したい。

(text: 下西 由紀子 | Yukiko Shimonishi)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

医療 MEDICAL

人工関節から高齢化社会のQOLを考える。上智大学 久森紀之教授が挑む生体機能材料研究

浅羽 晃

高齢化社会が進むにつれて、ますます重視されているのがQOL(Quality of Life/生活の質)だ。単に長生きできればいいというものではなく、命あるかぎり、充実した日々を過ごしたいという思いは、すべての人に共通するだろう。ところが、年齢を重ねるとQOLを損なうさまざまな事象と向き合うことになる。骨や関節軟骨などの変性による、骨粗鬆症、変形性脊椎症、変形性関節症などの疾患はその典型だ。上智大学理工学部機能創造理工学科では、人工関節を中心とした生体機能材料の研究によって、骨や関節に悩みを抱える患者を救おうとしている。研究のリーダーである久森紀之教授にお話をうかがった。

人工関節の多くは輸入品だが、
そのことによる問題も生じる

人工関節には、膝関節、股関節、肩関節、肘関節などがあるが、久森教授が専門領域としているのは人工膝関節だ。変形性膝関節症や関節リウマチによって膝関節の損傷が進むと、人工膝関節置換術という手術が行われ、その件数は現在、年間8万件に達する。これほど広く用いられている人工膝関節だが、まだまだ改良の余地は多い。

「日本で使われている人工関節はほとんどがアメリカやヨーロッパから輸入したものです。もちろん、手術においては患者さんの形状にできるだけ合った人工関節を選ぶのですが、輸入品は欧米の人の体型や体格、生活様式に合わせてつくっています。すなわち、日本人の患者さんに、完全に合っているとは言えないわけです。輸入品に頼るのではなく、日本人の体型、体格、生活様式に合わせた人工関節を、出だしから考える必要があります」

新たな独自の人工関節を設計する際は、日本の実情に合わせて、耐久性の向上も考慮される。現在の人工関節の耐久性は10~15年とされているが、高齢化が進む日本においては現状の耐久性が二次的な問題を発生させる恐れがあるのだ。

「70歳で人工関節にすると、80~85歳のときに交換する必要があります。高齢での手術は患者さんにとって肉体面、精神面で大きな負担になりますから、予期せぬ疾病を誘発するリスクもあるでしょう。そこで私たちは現状の2倍、20~30年の耐久性を目指して、研究・開発を進めています」

日本人の体型、体格、生活様式に合い、耐久性も向上させた人工関節をつくるとなると、素材と形状の両面から改良を進める必要がある。

「現在、人工関節の土台となるパーツの素材はチタンが一般的です。体内に入れていても毒性のある成分が出ることはないうえに、軽くて丈夫なことから選ばれているのですが、体に本当に適しているのかというと、確証はありません。そもそも、人工関節に使われているチタンは医療用に開発されたものではなく、航空機の材料として用いられているものです」

現行のチタンが、人工関節の素材としてベストであるとはかぎらないのだ。しかし、久森教授は、現時点ではチタンから離れるつもりはない。チタンを主成分としたチタン合金で、最適な素材がないかと探っている。

「まったく違う素材で、より人工関節に適したものがあるかもしれません。しかし、その素材を発見し、さらには安全性を検証して認可を受けるとなると、長い時間がかかります。私たちの仕事は、研究成果を社会にフィードバックする使命もありますから、スピードは重視します。そうなると、より優れたチタン合金を開発するほうが現実的なのです」

高度な医療である機能創造の研究を
慶應大学医学部とジョイントで行う

膝の動きを忠実に再現できる装置を開発した。たとえば、この装置に膝関節の模型を取り付けると、前十字靭帯や後十字靭帯、外側側副靭帯や内側側副靭帯にどのような力がかかるか、正確に測ることができる。

チタンについては、その長所である高い強度が、人工関節においてはマイナス要素となっている面もある。

「骨に対してチタンが強すぎるのです。我々の骨というのは体に力が入ることによって、毎日、入れ替わり、骨に力をかけないと痩せてきてしまいます。体内にチタンを入れると、チタンが力をもってしまい、場合によっては骨が痩せてしまうことがあります」

形状の改良については、ここ10年ほどで急速に進化かつ一般化した3Dプリンタが大いに役立っている。

「従来の人工関節は、いくつかあるサイズのバリエーションのなかから、患者さんに合ったものをインプラントしてきたわけですが、3Dプリンタを使うことにより、オーダーメイドで人工関節を提供できるようになります。ジャストフィットサイズのものを提供でき、骨質も考慮できるという意味では、3Dプリンタは整形外科領域において、非常に有効な手段になっています。実際に私たちも、チタン合金の粉末を使って3D造形した人工関節のサンプルをつくっています」

上智大学理工学部機能創造理工学科は、人工関節をはじめとする機能創造の研究を慶應義塾大学医学部と共同で行っている。

「ドクターは医者の考えで患者さんに向かいます。我々は医療で必要な実験の手法や、解析の方法、シミュレーションといったものを工学部の知見をもって行います。両者がジョイントすることで、医学に貢献することができれば、すばらしいことです」

上智大学理工学部と慶應大学医学部のジョイントによる大きな成果のひとつが、膝の動きを模擬できる装置の開発だ。この装置を用いると、膝を伸ばしたり、曲げたり、ひねったりという生理的な動作を忠実に再現できて、そのときに、膝関節のどの部分にどれだけの力がかかっているかを計測することができる。

「たとえば、どのような方向に、どれくらいの力を入れたら靭帯が切れるのかということがわかります。それを医学的なデータとして活用すれば、もっといい手術の手法や再建が提案できたり、新しい素材を使った人工靭帯をつくったりすることも可能でしょう。

痛みを解消する新しい装具は
膝の根本的な治療を可能にする

慶應大学医学部、義肢装具メーカーと共同開発した装具は膝痛の根本的な治療も可能にして、歩く楽しさを取り戻す。

膝を傷めている患者の歩行をサポートする装具も、上智大学理工学部機能創造理工学科と慶應大学医学部とのジョイントで開発した医療器具のひとつだ。

「膝が悪くて歩けないというのは、多くの場合、骨と骨が擦れて痛いからなのです。従来は、サポーターなどで膝を固定し、骨と骨が擦れないようにするという対処法が一般的でした。しかし、これでは治療を先延ばししているだけであり、膝の周りの筋肉は衰えるだけです。私たちは、骨と骨が離れていれば痛くはないという点に着目して、新しい装具を開発しました」

具体的には、装具の膝の部分に設けたリンクによって、膝を伸ばした状態のときには大腿骨(太ももの骨)と脛骨(膝から下の脚の骨)が強制的に離れるような仕掛けをつくり、骨と骨の接触を防いでいる。

膝の部分にリンクを設けたことにより、膝を伸ばしたときに大腿骨と脛骨が強制的に離れるようになっている。

「理論的には、大腿骨と脛骨が離れれば痛まないのですが、膝の小さなリンクによって本当に体重を支えられるのか、大腿骨を実際に持ち上げることができるのかということを、各種の計測により数値で示し、効果をエビデンスとして証明しました。実際に、この装具を試用した方からは、まったく痛みを感じずに歩くことができると、好評をいただいています」

この装具は、慶應大学医学部ならびに沖縄の義肢装具メーカーと共同で開発した。

「一般的に、現代の研究は、一個人や研究室だけで成果を上げることは難しい。工学があり、医学があり、メーカーがあって、チームとしてまとまることが非常に大事なのです。プロフェッショナルな集団が集まることによって、研究の成果が世に出るスピードが早くなります。工学だけでバイオマテリアルの研究を進めることには限界があると思います」

久森教授が進めている研究のなかで、実用化すれば有意義なもののひとつに、人工骨の新素材がある。現在、人工骨の主原料は歯磨き粉にも用いられているアパタイトであり、久森教授もアパタイトを基本とした素材を想定している。

「アパタイトとコラーゲンをミックスした材料を体に入れれば、骨の生成が早くなるのではないか、サンゴのような生物由来のカルシウムも利用できるのではないかなど、仮説を立てて研究しています」

近年、サンゴの白化現象が、地球温暖化を原因とするシンボリックな出来事として報じられている。環境悪化を食い止めることがなにより大事なのだろうが、死滅したサンゴの有効利用を考えることも大切な視点だろう。そこには久森教授の研究に対する信条が表れているように思える。

久森紀之(Noriyuki Hisamori)
1971年、東京都生まれ。工学院大学工学研究科工学化学専攻博士修了。1999年より、上智大学理工学部機能創造理工学科にて、高度医療技術に用いる生体機能材料について、ならびに環境強度および破壊力学に基づく構造物の安全安心性について研究中。現在、理工学部教授。慶應義塾大学医学部スポーツ医学総合センター非常勤講師。ソフィアオリンピック・パラリンピックプロジェクト研究部会長。研究の先には患者さんがいるので、「誠実に、謙虚に」がモットー。

(text: 浅羽 晃)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー