プロダクト PRODUCT

お手軽で、お手頃。「Finch」が電動義手の常識を変える!【the innovator】前編

長谷川茂雄

レディメイド(既製品)で対向配置の3指構造。それが電動義手“Finch(フィンチ)”の大きな特徴だ。日本の義手ユーザーの85%以上が装飾義手を使用している現状を考えれば、その構造もヴィジュアルも、メインストリームと逆行していると言わざるを得ない。とはいえ、無駄をそぎ落としたスタイリッシュなフォルムには、不快感ではなく好印象を抱く人も少なくないはずだ。しかも軽量で使いやすく、日常生活で求められる動きや負荷にもオールマイティに対応できると聞けば、大きな可能性を感じる。この興味深いプロダクトを生み出したキーマンの一人、大阪工業大学の吉川雅博准教授を訪ねた。

ソフトを研究しても
それを乗せるハードがなかった

JR大阪駅から地下通路を10分ほど歩けば、地上に出ることなく大阪工業大学の梅田キャンパスに到着する。今年4月に完成したばかりの真新しいキャンパスは、地上21階建ての高層ビル。真横には梅田を象徴する巨大な観覧車がそびえ立つ都会の真ん中に、吉川雅博准教授の研究室はある。

吉川氏は、今でこそロボティクスや福祉工学分野で多彩な研究を行っているが、もともとは心理学、行動科学、IT企業のマーケティングといったまったく別の分野に身を置いていた。ロボティクス分野に携わってからも、ハードではなくソフトの研究をしていたと語る。

「最初は義手の専用ソフトみたいなものを研究していたんです。腕につけた筋電センサーを機械学習させてあげると筋電だけで7動作できるようになるとか、そういうことを追求していました。ただ、いくらソフトを研究したところで、それを乗せるハードがないことに気がついたんです。実際にハードの開発を始めたのは2010年ごろ。もう必要に駆られてという感じでした」

吉川氏は研究室の奥のデスクでプロダクト開発を行うことが多い。乱雑に置かれた工具を巧みに使いながら、職人のようにリペアやメンテナンスもこなす。

もっと軽くて安くて
簡単に着けられる義手はないものか

日本で圧倒的に使用されているのがこちらのような装飾義手。リアルな見た目は魅力的だが、機能はほぼない。

現在の日本では、上肢の欠損者は約8万人、前腕欠損者は約1万人と推定されている。前腕欠損者が作業に使用できる義手は、大きく分けると「能動フック」と「筋電義手」の2種。とはいえ、前者は作業性に優れるが、フックの形状が心理的負担になる、後者は自然な操作性があっても非常に高価という難点を持ち合わせているため普及には至らず、多くの人は把持機能のない装飾義手を使用している。Finchは、それらの多くの問題点をクリアした画期的な提案でもある。

「そもそもは、“オーバースペックで重い義手ではない、もっと軽くて安くて簡単に着けられるものはないかな”という(国立障害者リハビリテーション研究所の)河島(則天)さんとの何気ない会話からスタートしました。実は河島さんがカナダに行った時に、マジックハンドのような子ども用の玩具を見て、“これはいい”とインスピレーションが沸いたそうです。そんなアイデアから互いに煮詰めていって、人と接する部分に使うサポーター作りのノウハウのあるダイヤ工業さんにも間に入っていただきながら、試作していきました」

機能を足すのではなく
引き算で作ったのがFinch

Finchは、そんないい意味での“お手軽”な発想が何よりもユニークだ。簡単に装着できるのはもちろん、とにかく軽い。2011年に開発がスタートしてから約1年で3Dプリンターを導入し、その開発スピードはさらに加速した。最終的には、ほぼすべての工程を研究室で作り、メンテナンスもできる状態が整ったという。

「いまFinchは、我々の研究室でほぼ100%設計しています。さらに仕上げまで研究室でやっているのですが、それはかなり珍しいケースです。通常は、あるところまで研究室で作って、あとは業者に仕上げてもらいますが、Finchは仕上げは疎かメンテナンスまで研究室で行っています。そこまでやらないと、関わっていただく企業のコスト負担を軽減できないという理由もあります」

無駄を削ぎ落としたシャープなフォルムが印象的なFinch。ロボティクスの技術が活かされた対向3指構造は、これまでの義手のイメージを覆した。総重量330g、価格は15万円。

無駄を削ぎ落としたデザインは、見た目のシンプルさや美しさだけでなく、モノづくりにかかるコストを軽減している。それが買いやすい値段を生み、ユーザーの親近感へと繋がっている。便利でハイスペックな筋電義手にはない大きな魅力だ。

「何か機能を足すのではなく、どちらかといえば引き算で作ったのがFinchです。電動義手に必要な機能だけを残して、無駄を極力省いている。実は、企画段階から150万円の筋電義手の10分の1の値段にするという目標がありました。それを実現するためには、モーターもフィードバックのためのセンサーもたくさん使えませんが、試行錯誤を繰り返しながら少しずつハードルをクリアしていきました。ちなみに、表にネジが出ないように設計した見た目の格好良さもこだわりです(笑)」

後編へつづく

吉川雅博(よしかわ・まさひろ)
大阪工業大学ロボティクス&デザイン工学部システムデザイン工学科准教授。北海道大学文学部で認知神経科学を学び、卒業後はIT企業に入社。企画・マーケティングに従事した後、筑波大学に再入学。産業技術研究所の研究員を経て、奈良先端科学技術大学院大学ロボティクス研究室の助教に就任。2016年4月より現職。専門は福祉工学。国立障害者リハビリテーションセンター研究所の河島則天氏とFinchを企画立案したのは2011年。東京大学生産技術研究所の山中俊治氏も開発に加わり、同プロダクトは、2016年の1月にはダイヤ工業より正式に販売を開始。同年、超モノづくり部品大賞にて健康・バイオ・医療機器部品賞を受賞。

(text: 長谷川茂雄)

(photo: 長谷川茂雄)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

プロダクト PRODUCT

アップルウォッチでも測定可能! 動きの「滑らかさ」を世界に先駆け数値化

富山英三郎

「脊髄性筋萎縮症(SMA)」の患者の動きを、モーションキャプチャやアップルウォッチを使い3次元解析するプログラムを開発した岐阜大大学院の研究チーム。本来は薬の効果を数値的に可視化するためのものだが、将来的にはスポーツ選手や舞踏家、職人技が魅せる「動きの美しさ」を数値化できるかもしれない。そんな3次元解析プログラムが生まれた背景や、今後の応用についてなどを同大学院連合創薬医療情報研究科の加藤善一郎教授に伺った。

ぎこちない動きと、
スムーズな動きの違いは何か?

加藤教授は創薬に関する研究を続ける傍ら、現在も臨床医として同大学の小児科でさまざまな患者を診察。医療の現場で得た知見を活用し、いくつもの研究を同時進行させている。そのひとつの成果が、モーションキャプチャやアップルウォッチを使った世界初の3次元解析プログラムだ。これは、全身の筋力が低下していく「脊髄性筋萎縮症(SMA)」患者の体の動きを解析するために生まれた。

「脊髄性筋萎縮症は、まだ研修医だった約30年前に担当していたことがあったんです。当時は薬もなく、視線を使っての会話術などQOL(クオリティ・オブ・ライフ)を改善する程度のことしかできなかった。それから約10年後、『TRH』という薬を、岐阜大学独自で脊髄性筋萎縮症の患者に向けて臨床応用し始めたのですが、その薬効を定量的に評価する方法がないということに改めて驚いたわけです」

脊髄性筋萎縮症の症状を評価する際、これまでは『腕が上がらない=0点』、『途中まで上がる=1点』、『耳まで上がる=2点』など大まかな評価方法が主体だった。

「でも、震えながら腕がぎこちなく上がるのと、スムーズに上がるのでは違いますよね? 『TRH』を投与すると、明らかに動きがスムーズになるわけです。これを臨床的には『滑らかになった』と表現します。しかし、その『滑らかさ』を評価する指標がなかった。これでは、薬を承認する機関に提出しても、どちらも手が上がっている状態と見なされ『治療効果ナシ』と判断されてしまう。そこで何かしらの指標が必要だと考えていました」

加藤教授は、遺伝子の変異によって生まれる病気の研究でも知られている。なかでも、免疫異常の原因物質(分子構造)を世界で初めて『立体的(3D)』に捉え、新薬開発へと導いた功績が大きい。『ハイテク技術を用いて立体構造を解明していく』ことは得意分野なのだ。

「体の動きを3Dで表現しようと考えたときに、スポーツの世界ではモーションキャプチャを使っているなと思ったんです。そこで、学内に眠っていた装置を引っ張り出して計測をしてみました。しかし、既存の方法論では臨床現場で必要とされる評価ができない。つまり、ぎこちなく上がる手と、滑らかに上がる手の違いを数値化できなかった」

モーションキャプチャとは、複数の赤外線カメラを並べた場所でマーカーと呼ばれる小さな球体を体に取り付ける。すると、カメラがマーカーの動きを捉え、軌道を計測していくというものだ。主に、正常な動きと比べてどれくらいズレているのかを計測するものであり、また正常値とされるものは健常者を対象としたものであった。

シンプルを極めたら、
アップルウォッチでも測定できることが判明

「臨床的な所見をどうすれば数学的に表現できるかを試行錯誤をしているとき、大学行きのバスの中で出会った方に話しかけてみたら、偶然にもコンピューターサイエンスを専門とする松丸先生だったわけです」

共同研究者である松丸直樹さんは、会津大学のコンピュータ理工学部、米国ウェイン州立大学コンピュータ研究科を経て、ドイツのフリードリッヒ・シラー大学コンピューターサイエンス研究科で理学博士となった人物。しかし、そんな専門家とタッグを組んでも『滑らかさ』の指標づくりには5年の歳月がかかった。

「できあがってみれば、1ヶ月もあればできたと思えるかもしれない(笑)。基本的な計算方法は、かなり早い段階でほぼ決まっていました。でも、患者さんにお願いするタスク(動き)と、我々が考えている解析手法がフィットするかなども含め、実証して検証して、最終的な計算まで詰めるのに時間がかかったんです」

一般的に、ぎこちない動きとスムーズな動きの違いは、モーションキャプチャを使いマーカーがブレる姿を表現すればいいと考える。そこで『ブレ』とは何かを考えたとき、加藤教授らは『空間精確性』(反復運動した際の、軌道の差を体積に似た数値として算出)と、『滑らかさ』(連続するベクトルの変化のズレから軌道の歪みを算出)というふたつの指標を取り入れた。

「一般的なモーションキャプチャは、20~30個のマーカーを取り付けるので、それもまたモーションキャプチャが臨床現場で敬遠される要因です。そこで、我々はできる限りシンプルなものを作ろうと思い研究開発した結果、マーカーが1つあれば解析できることがわかりました。その副産物としてアップルウォッチに内蔵されている加速度センサーなどを使っても、ほぼ同じ『空間精確性』『滑らかさ』という解析指標を使って評価できることがわかりました。実際の計算式はまったく別物なのですが(笑)」

モーションキャプチャを使う場合は、赤外線カメラなどの装置が必要になるが、アップルウォッチなら専用のアプリを使うだけ。これならば、町のクリニック、さらには在宅でも測定することができる。そうなると、遠隔医療の領域まで広がっていくことが予想される。また、動画に比べてモーションキャプチャやアップルウォッチからのデータは、せいぜい数十キロバイト。そのため、データのやり取りや保存も容易だ。今後、世界中からモーションキャプチャやアップルウォッチからのデータが集まれば、脊髄性筋萎縮症の子どもの標準値も決まってくる。すると、データ解析の手法にも広がりが生まれるかもしれない。

動きの滑らかさを追求すると、
「美」とは何か? にたどり着く

「運動機能を定量評価できるということは、薬の効果を可視化できるだけでなく、逆にどれくらいのペースで悪くなっていくのかもわかります。実は、そこもよくわかっていない部分なんです。また、神経疾患や筋肉疾患の患者さんだけでなく、発達障害の方へも応用できると思われます。さらには、スポーツや踊り、伝統芸能の世界で『キレ』や『美しさ』などと呼ばれる曖昧な表現も、数値で表現できるかもしれません」

私たちがプロのスポーツ選手やダンサーを見たとき、「動きに優雅さがある」「動きにキレがある」などと感心する場面は多い。しかし、なぜそう感じるのかを数学的に表現する術はこれまでになかった。しかし、『空間精確性』と『滑らか』さという指標を応用すれば、従来は曖昧だった『美』の領域へと踏み込むことができる。

「モーションキャプチャはスポーツの分野だけでなく、CGの世界でも使われていたりと、世界中にはさまざまなデータがあります。それらの過去データを使い、我々の解析プログラムで新しい評価軸を得ることができる。そうなると、医療とは違う業界でまったく新しい使われ方が生まれる可能性がある。そうなったら面白いですよね」

最後に、現在気になっている技術についてお話を伺った。

「アップルウォッチなど、ウェアラブルデバイスの進化に注目しています。今後さらに小さくなれば、指の繊細な表現も測定できるなど、ハード面の発達によって次なる展開が生まれる気がします」

加藤善一郎(Zenichiro Kato)
1990年 岐阜大学医学部医学科卒業、岐阜大学医学部小児科入局。
1997年 岐阜大学院医学研究科修了(医学博士)、奈良先端科学技術大学院大学バイオサイエンス研究科(国内留学・研究員)
1998年 岐阜大学医学部 助手(小児科)
2004年 岐阜大学医学部 講師(小児科)
2005年 ハーバード大学分子細胞生物学留学 客員研究員
2010年 岐阜大学医学部 准教授(小児科)
2011年 岐阜大学大学院医学系研究科 臨床教授(小児病態学)
2014年 岐阜大学大学院連合創薬医療情報研究科 教授(構造医学)、岐阜大学大学院医学系研究科 教授(小児病態学)

(text: 富山英三郎)

(photo: 岐阜大学)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー