対談 CONVERSATION

“アフターコロナ”でどう変わる⁉ 情報学から考える モビリティの現在地とこれから

長谷川茂雄

コロナ禍は、果たして世界の秩序や価値観を大きく変えたのだろうか? その答えは現時点では明言できないが、間違いなく人類はこの“わざわい”の先にある世界を具体的にイメージし始めている。今回の特集のテーマであるモビリティの在り方もそのひとつだ。移動は人類にとっての根源的な行為であるし、そのためのツールであるモビリティは、常にライフスタイルと直結している。ゆえに「アフターコロナ」は、それに見合った新たなモビリティが求められるはずだ。その最適解を導き出すための冷静な視点とガイドラインを、日本におけるコンピューターサイエンス研究の第一人者、佐藤一郎氏に伺った。

いまはモビリティの
定義が変わる転換期

近年、AIや自動運転といった技術面での進歩に注目が集まり、“快適な移動”をもたらすツールであるモビリティに対しては、期待値がかなり高まっていた。

ところが、誰も予想できなかった新型コロナウイルスの感染拡大を受け、その描いた未来をデザインしなおす必要が出てきた。

まずは、これから移動そのものはどうなるのかを捉える必要があるが、そもそも移動には、人と物(物流)の2種がある。両者はどのように変化したのだろうか?

「新型コロナウイルスで、移動というものはかなり制約される状況になりましたし、人の移動に関しては、いかに移動そのものを“させない”かを考える必要も出てきました。これからは、その2つのテーマが並存して進んでいくはずです。モビリティの定義そのものがちょうど変わる、いわば変わり目にいると言えます」

オンラインによる働き方もある程度浸透してきた現在、確かに人は積極的に“移動しない”ようになった。それゆえ、モビリティを使った人の移動を佐藤氏は、「物の移動と分けて考えられなくなった」という。では、物の移動はどうなるのか?

「人の移動が減る分、逆に物の移動は増えます。いわゆるECのような形で多くの人が物を買い、宅配便は増えています。巷で話題になっているウーバーイーツのように、専門物流業者以外に物流を担う人もたくさん出てきています。ITが人々の時間を断片化してきており、普段は別の仕事をしていて、空いた時間に配達の仕事をする人はこれからも増えていくはずで、断片化された空き時間の使い方が、様々な局面で重要となります。あとは、数年おきに注目される“共同物流”もクローズアップされる可能性はあります」

「モビリティの捉え方は、コロナ禍によって大きく変わった」と語る佐藤氏。

共同物流とは、複数の企業が同一のインフラを活用して保管や配送などの作業を行うことだが、コストが削減できる反面、他者に様々な情報が漏れる危険性があったり、業者ごとの細かな要望を共有できないなど問題点も多く、これまでは、長年成功している事例が少ない。

「これからは、ITを駆使して諸問題を解決しながら、コストカットに加えて、環境負荷を軽減する手段として共同物流のメリットを活かそうという流れは出てくるかもしれません。加えて、共同物流は倉庫と小売間といった比較的中距離の物流ですが、例えば東京と大阪間というような長距離でどれだけ効率的に物流を行うか? という課題もあります。トラックだけではなく、鉄道や船など複数の移動手段を使う“モーダルシフト”も、これからより注目される傾向にあります」

東京にはシェアリングと
公共交通の融合型がマッチする

そんな現状を踏まえたうえで、より人の生活に根ざしたモビリティの在り方も考えてみたい。例えば、現在MaaS(マース:Mobility as a Service)という概念がヨーロッパを中心に浸透してきている。マイカー以外のあらゆるモビリティをITでシームレスに結びつけるサービスのことだが、こういう動きは今後加速するといわれる。

例えば、コロナ禍以後、電動自転車などの需要が高まっているという話はよく聞く。身近なところでいえば、シェアサイクルなどのサービスは、日本でもさらに広がっていく可能性はあるのだろうか?

「日本の場合は、東京を見ればわかりますが、基本的に住宅とオフィスが混在していません。海外の都市のようにシェアリング自転車や電動スクーターが浸透するのは難しくなります。シェアリング自転車を例に取ると、東京の場合、朝は多くの人がやや郊外の住宅から最寄駅まで乗っていき、帰りは最寄駅から住宅へと向かいます。そうなると自転車の需要が時間に応じて偏ります。この結果、自転車の再配置の問題が出てきます。

シェアリング自転車置き場には、自転車がなくなってもいけないし、満杯になってもいけませんから、運用事業者はトラックを使って置き場から置き場へ再配置をしなければなりません。表に現れませんが、そこに一番コストがかかるんです。世界の都市で見れば、例えばパリは、住宅とオフィスが混在していますからシェアサイクルは古くから浸透しています。海外の都市におけるビジネスモデルが東京で使えるかというと、そうではないのです」

「世界の別の都市で活用されているモビリティのサービスやシステムが、そのまま日本で適用できるわけではない」。佐藤氏いわく「東京は、公共とシェアの融合を進めるのには有利な街」。

シェアリングモビリティは確かに便利ではあるが、街のスタイルによって向き不向きがあるというのは頷ける。では、日本では、シェアリングの乗り物はまったく向かないか、というとそうではない。公共交通とシェアリングモビリティの“融合型”がマッチするという。

「例えば住宅地ではなく、オフィス街の地下鉄の出入り口の近くに、シェアリング自転車の置き場を作る。そうすると地下鉄を降りたら自転車がすぐ利用できて重宝です。住宅地よりは実現性が高い。その背景は、オフィス街は人々が行き交うので時間に応じた偏りが少ないからです。また、地下鉄駅間は距離が短いことを考慮すると、例えば駅の自転車置き場に自転車が少ない場合は、自転車が残っている隣接する駅まで地下鉄で移動して、そこで自転車を借りるという手法も、地下鉄の事業者と連携すれば可能なはずです。海外でも公共交通とシェアリング自転車の連携は進んでいるとはいえず、東京で先行してみる価値はあるでしょう」

シェアリングと公共のハイブリッドというモビリティとの付き合い方。確かに住宅地とオフィス街が別れていることが多い日本では、それがスマートにフィットしそうだ。ただ、その場合はシェアリングの事業者と公共交通の距離感を今よりも縮めていく必要がある。では、AIに関してはどうだろうか?

ハイブリッド型のシステムを構築したうえで、オフィス街で使うモビリティにAIを搭載して、利便性を上げられないものか?

「モビリティそのものにAIを搭載して、音声で指示を与えて何かをしてもらうとか、自動運転の自転車が駅まで迎えに来てくれるとか、現段階ではそういったパフォーマンスの必要性はあまりない気がします。AIに関しては、ユーザーの意図を事前に予測して、使う自転車を予約してくれるとか、裏方的にユーザーの利便性を高めてくれるような使い方のほうが現実的ではないでしょうか」

自転車や電動スクーターそのもののインテリジェンスを高めるよりも、AIは、“先回り”的なサポート役に使ったほうがより有意義なようだ。さらに自動車においては、安全性のアップデートに使われている。

自動車はモビリティという
システムの一部になる

「これからは、自動車にカメラだけではなく、レーザーを使ったセンサーなどが搭載されるはず。そうなると障害物の発見能力が格段に上がりますから、事故を未然に防ぐ能力も高まります。

さらに、現状の自動運転は、自動車にたくさんセンサーを付けてコンピュータで処理をしていますが、自動車から見える視点には限界がありますから、他の車のカメラを含むセンサー情報も共有できれば、ドライバーの視線を超える視野を得ることになりますし、走る道路そのものにセンサーをつけて情報を共有できれば、さらに安全性は高まります。もはや自動車という閉じた単位ではなくて、それこそモビリティというひとつのシステムの一部が自動車という考え方に変わっていくのだと思います」

「モビリティという大きなシステムが作られるには、難題が多々ある」。それをクリアすることで、人間の生活はさらに大きく変わるのかもしれない。

他のモビリティや道路と連携して情報を共有しながら走るモビリティ。それが未来のモビリティの一つの在り方かもしれない。ただそこにももちろん課題がある。

「街や道路にセンサーを付けるには、それなりのコストがかかります。車の運転のためだけにセンサーを使うのではなく、社会的に他の用途でも使えるようにしなければ、その問題はクリアできません。そしてもっと難しいのは、新規の街ではなく、既存の街の方です。レガシーな場所をどうやってインテリジェント化するのか、ということです。

例えば過去に博物館のスマート化に関する実証実験を、上野の国立科学博物館などでやらせていただきましたが、それは企画展ではなく、既存の展示空間のスマート化でしたが、展示の邪魔をしないことが難題でした。、ショッピングモールなどで景観を損ねずに電源などを確保し、センサーを設置して、コンピュータで制御できるシステムを組み込むことも同じような難しさがあります。複雑に入り組んだ街もそうですし、そもそもそういった場所で、自動運転が可能なのか?という課題もあります」

既存の街や建物、インフラに新しいモビリティというシステムを組み込むことが難しければ、まだ未発達の地域を実験都市的に作り上げるというのも考えられなくはない。

「確かに実験都市というのは、新たなモビリティシステムを作っていくには好都合かもしれません。ただ、そこで得た知見が、既存の街でも応用できるかというと、それは違う部分もあります。また既存の街に関しても、東京などの大都会は複雑すぎます。今後はモビリティの概念が変わったときに都市や街に求められる大きさが違ってくるはず。新しいモビリティを活かすことで、新たな発展を遂げる地域や街が地方から出てくる可能性は、大いにあるのではないでしょうか」

(さとう・いちろう)
国立情報学研究所(NII)・情報社会相関研究系教授。慶應義塾大学理工学部電気工学科卒業。慶應義塾大学大学院理工学研究科計算機科学専攻博士課程修了。博士(工学)。お茶の水女子大学理学部情報学科助教授、国立情報学研究所助教授等を経て、2006年より現職。ほかにランク・ゼロックス客員研究員(1994〜1995年)、科学技術振興事業団さきがけ21研究員(1999〜2002年)等を務める。仮面ライダーゼロワンのAI技術アドバイザー(2019年)としても知られる。

(text: 長谷川茂雄)

(photo: 壬生真理子)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

悲惨な事故を激減できるか?データ活用が可能にする〝未事故〟社会

宮本さおり

ドライブレコーダーの普及と共に、もはや当たり前のようにいわれ始めた運転にまつわるセンシング。先日、高齢者の運転により母子の命を奪われた痛ましい事故の初公判が行われたばかりだが、被告はあくまでも「車の不具合」が理由だと主張し注目を集めた。交通事故は誰にでも起きうることだが、裁判で白黒がついたとしても失われた命が戻ることはない。ドライバーや歩行者が気をつけるべきこともあるが、人間の感覚だけに頼らない、事故を未然に防ぐ試みが多方面ではじまっている。あらゆる移動にまつわるセンサーデータを収集、解析することで社会に役立てようとする株式会社スマートドライブでは、事故を未然に防ぐことにも活用できそうなデータ活用プラットフォームを構築、今後は渋滞緩和などにも役立てたいと語っている。同社CEOの北川烈氏を編集長・杉原行里が訪ねた。

技術と実生活を結んで
革新をおこす

杉原:実は、僕がRDSでやっていることと、スマートドライブさんがされていることで近いなと思うところがありまして、今日はお話を伺いにきました。

北川:ありがとうございます。

杉原:僕たちはセンシングで全身を可視化して、今後はプライベートブロックチェーンで、未病や自分の身体の最適解を知ることなどをやっていきたいと思っているんです。スマートドライブさんがされていることは、考え方として非常に近いことを「移動」という分野においてされているなと感じているのですが。

北川:我々は〝動くもの〟を軸に考えてデータプラットフォームを作ろうとしています。一番多いものとしては車なんですけど、最近ですと人の動きや、そのセンサーデータ、さらにその周辺の情報で、例えば、事故を起こした場合に、その周辺情報をひとつのプラットフォームに集めて解析するようなこともはじめています。例えば運転にまつわるデータですと、集めたデータを解析するアルゴリズムがいくつかあって、それを他社に提供して、新しい保険を一緒に作るとか、自動車メーカーの新しいサービスを作るとか、マーケティング戦略を一緒に作るといったような事業と、そのプラットフォームを活用し我々自身がSaaSのサービスを展開しています。

事業概要を説明する株式会社スマートドライブ北川氏

 

杉原:なるほど。もともとスマートドライブって、北川さんが立ち上げられたのですか?

北川:そうです。私が大学院にいるときに、移動体などの時系列処理のデータ分析研究をやっていたのですが、それを社会実装したいなと思ったことがきっかけで創業した会社です。

杉原:創業はいつ頃ですか?

北川:2013年の末ですね。

杉原:ものすごくいいところに視点を置かれましたね。これから一番トレンドになるところですよね(笑)。日本はいま、海外の先進国と比べるとデータサイエンティスト不足で大変なことになっているといわれていますが、御社には盤石な体制がありますよね。データの集積や解析に、そもそも興味を持たれたきっかけは何かあったのですか?

北川:大学院って、研究テーマがたくさんあると思うのですが、私の場合は技術的な領域と自分の実生活が密接に結び付くところがいいなと思っていました。大学院の研究領域だと、技術的にはすごいけど、リアリティーがない世界ってあるんですよね。私はそういうものよりは、やはり実生活の課題を解決するとか、自分では “肌触りがある領域” という言い方をするんですけど、そういった領域のものがいいなと感じていて、研究室でも実世界の問題に応用が効くとか、技術をメディアアートなどの表現に応用することを推奨されて、自由に研究することを許してくれていました。そんな中、このテーマに出会って腹落ちをしたというのがきっかけです。だから、車の渋滞をどうしたら解消できるのかなど、身近な問題に目を向けるようになっていったんです。

〝車に乗るのが嫌い。〟
から始まった開発

杉原:僕たちがRDSでプロダクトを開発するときに、“自分ごと化” という言葉をよく使うんですけれども、それと近いのかなと。自分の身の回りに起きていることではない、もう少し先のことまで言ってしまうと、その感覚値にズレが生じてしまいますよね。例えば今の北川さんのお話だと、車の渋滞をどうやって解消するかって、渋滞を解消してほしくない人なんていないですもんね(笑)。

北川:そうですよね。私がこの話をするとネタっぽくなってしまうんですけど、実は私、あまり車が好きではないんです。車酔いをしてしまうので、できれば乗りたくない。
そんななか、事故や渋滞、車酔いといった移動における負の部分が、今後自動運転技術などの進歩で解決されていくという社会を早く実現させたいなという思いで創業しました。

杉原:北川さんの会社では、異業種とのパートナーシップや提携をされている。いろんな領域にプラットフォームで培われたアルゴリズムを提供されているという印象を受けたのですが、根幹となる技術やアルゴリズムになにか違いはあるのですか?

北川:基本は同じです。そのベースとなるものを保険に使うか技術に使うかによっての差はありますが、根底の部分は同じです。

杉原:今はどのようなことをされているのですか?

北川:分かりやすい例でお話しすると、一日の運転を数十万通りの軸でデータポイントを取り分けて、そこで機械学習をさせたりしています。だいたい2週間くらいかけてデータを取ると、その人が事故を起こす確率をかなりの高確率で当てられるんです。また、エンジンをかけた瞬間にその人がどこに行くかを推定するような研究開発も行っています。

杉原:それはすごい!!

北川:そういったR&D(研究開発)要素も含まれたアルゴリズムもあれば、リアルタイムにいろんなところから上がってくるセンサーデータを、APIとして様々なサービスに使えるようにすることもしています。

杉原:今のお話の中に出てきたR&D的な要素でいくと、例えばステアリングを握った感覚とか、ドアの開閉時の力の強弱なんかも含めて、この人がこれからどこに行くのかを推測したりするということですか?

北川:今はまだそこまではいっていないのですが、そういったデータが取れるようになれば、もっと精度は上がってくると思います。今我々が取っているのはGPSとかカメラの情報なので、その時の天気とか、エンジンをかけた時間帯とか、過去の行動履歴から推定できないかということをやっています。あとは、タイヤのメンテナンス時期をお知らせできるといったようなことです。集積したデータを使えば、故障を予測することも出来るようになります。

事故を未然に防ぐ仕組み

杉原:医療の側面から考えると未病を認知する感じですよね。僕は車が好きなので、タイヤ交換しない人やタイヤの空気圧を調べない人が信じられないんです(笑)。事故の要因として、車の整備不良もかなりの割合を占めていると思われますし、整備不足を指摘してくれるだけでも事故や故障を未然に防ぐことにつながりそうですよね。そのほかには、どんなことをされているのでしょうか。

北川:2つあります。ひとつは、我々はDX1.0と呼んでいるのですが、企業運営を考える時、社員であったり、物であったりがどこを移動しているかが分かったり、安全運転の度合いが分かるだけで、移動効率が上がるんですよね。例えば、営業車両の位置が分かれば、どういう動きをしていたのかを把握できる。そのデータを使えば、個人がいちいち日報を付けなくても、自動で日報が上がってくるとか、そういった移動にまつわる業務プロセスがDX化されるみたいなものって、実はまだまだ出来ていない。そこに対して我々は車両の管理とか、ドライバーの事故を無くすといったプロダクトや見守りみたいなものを出しています。

杉原:つまり、移動にまつわるDXを広く浅くやっていこうとされている。

北川:そうです。

杉原:その仕組みは物流などにも広く利用できそうですよね。

北川:そうですね。先ほどご質問いただいた、リスクや故障、行動を予測するというのは、我々としてはプラットフォーム事業と呼んでいるところで、これをパートナーと一緒に、例えば保険と組み合わせることで、安全運転をしている人は保険が安くなるといったような価格が変動する保険が作れますよとか。車を買ったら終わりではなくて、その後のメンテナンスまで完璧にサポートされている車が手に入りますよといったように、弊社のプラットフォーム×他社のサービスで、より深いDXをしていけないかと考えているのです。それをDX2.0と呼んでいて(笑)。広く浅くと、パートナーと深くつくっていくという、この2つの事業を展開しているところです。

杉原:おもしろいですね。DX3.0 、DX4.0はどうなっていくのか、これから楽しみですね。先ほど北川さんがおっしゃっていたように、物流にその技術が入っていったとき、僕たち消費者側もデータ提供を行っていれば、家にいて受け取れる時間帯に事前確認する必要なく配達してらえたりしますよね。

北川:弊社の強みは、そういったプラットフォームとして他社にいろんな形で提供できるということと、それによって、いろんなものとデータを連携しやすいということなんです。

杉原:ビッグデータが集まってくるということですよね。ということは、そのビッグデータにアクセスできる権利を、パートナーと契約しながらやっていくというのが現在のスマートドライブさんのビジネスモデルということですよね。

北川:おっしゃる通りです。ゆくゆくはマーケットプレイスみたいなイメージで、いろんな会社をつないでいくと、自動的に他社とつながってサービスの幅が広がっていくというというところまで出来てくれば、そこがDX3.0 といったところでしょうか(笑)。

杉原:すごいな。もう3.0まできましたね(笑)。楽しみです。

(プロフィール)
北川烈(きたがわ・れつ)
SmartDrive 代表取締役 (CEO) 。慶應義塾大学在籍時に国内ベンチャーでインターンを経験、複数の新規事業立ち上げに参加。その後、1年間米国に留学、エンジニアリングを学んだのち、東京大学大学院に進学。研究分野は移動体のデータ分析。その中で、今後自動車のデータ活用、EV、自動運転技術が今後の移動を大きく変えていくことに感銘を受け、在学中にSmartDriveを創業した。
https://smartdrive.co.jp

(text: 宮本さおり)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー