対談 CONVERSATION

行動から人の内面状態を読み取るAI!?岡田将吾の気になる研究 前編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。同氏の試みは、人間の内面の状態を理解するためのAIの新分野として世界から注目を浴びる。これらの研究は認知症の初期症状などを読み取る手がかりにもなるという。編集長・杉原が、最先端の研究の現状とその先に広がる未来について伺った。

人の行動から内面状態を理解するという試み

杉原:もともと岡田さんは、大学でいわゆるAIに関する研究をされていたんですか?

岡田:そうですね。人工知能を基本に、修士、学士と約5年間研究をしまして、少しずつ人の行動を予測するとか、人の行動からコンテキストを推定するということにフォーカスするようになりました。 例えば、この人のしゃべり方や使う言葉の特徴がこうなら、この人はロボットとのおしゃべりを楽しんでいるとか、いくつかの行動から、人の内面を予測するというような研究です。

杉原:今日は、話していて僕の思惑がバレるかもしれないから、サングラスか何か掛けたい気分です(笑)。

岡田:いや、僕自身は(内面を予測することは)できないですよ(笑)。システムにはできてしまうことがありますけどね。

人の行動から内面を読み取るという研究を続ける岡田氏。「最近は、手の動きと感情の関係性が気になる」という。

杉原:ならよかったです(笑)。岡田さんのそういった研究は、AIなどを通じて出口がたくさん出てきたという段階ですか?

岡田:そうですね。最近は動作を測るセンサーが安くなったりもして、状況が変わってきましたし、企業でも自分たちのような研究をしているところが出てきました。そういうプロジェクトに自分が加わることも増えてきて、出口は広がったと感じています。

杉原:もともと岡田さんがAIに興味を持ったのは、どういった経緯でしょうか?

岡田:最初は大学で物理をやっていたのですが、物理の世界っていろいろと難しくて挫折してしまいました。それで物理の先生にはちょっと失礼なんですが(笑)、もう少し目に見えてわかりやすいことがやりたいと思って、ロボットに顔の認識や画像の認識をさせて動かすという研究をやっている研究室に入ったんです。AIを研究し始めたのは、そこからですね。

杉原:岡田さんのような分野の研究者は、日本にどのくらいいらっしゃるんですか?

岡田:もちろん産官学で人工知能の研究をされているグループは山ほどありますけど、ピンポイントで、人の行動から内面状態を理解するみたいなことに焦点を当てているのは、僕たちと数えるくらいしかないです。

こちらは、2018年にジョージ・アンド・ショーン合同会社(現株式会社)と岡田研究室が共同で開設したG&S Labのイメージビジュアル。IoTデバイスであるbiblle(ビブル)を活用して、行動学習に特化した機械学習プログラムの開発を行っている。

もう多くの企業ではAIが採用面接をしている!?

杉原:表情から何かを読み取るということは、なんとなく僕もイメージできるんですが、そこから購買意欲だったり、そこに出口を見つけていくというのは、なんだか大学でやる研究っぽくないなと思いますね(笑)。

岡田:そう言われれば、そうかもしれないですね。

杉原:僕自身のイメージでは、大学の先生は研究を突き詰めて、あとはアウトプットを第三者に見つけてもらう、そんなスタイルが多いなと常々感じているんですよ。それが出口までしっかりとしていて、岡田さんの研究は面白いなと思います。

岡田:そう言っていただけるとありがたいです(笑)。確かにそれは狙っていて、研究室でコンピューターの前に座って突き詰めるのではなく、実際のインパクトのあるデータに対して、なんらかの回答を出していくほうが、世の中的にも出口がわかりやすいですし、そういうことは意識していますね。

岡田氏の研究に興味津々の杉原。感情という抽象的なものを数値化するという試みには、シンパシーを感じているようだ。

杉原:世界的にはどうなんですか?

岡田:コンピューティング分野の国際会議のような場には、アメリカ、ヨーロッパの有名大学の研究者が集まってきますが、そこでは感情を理解するという研究が一番多いように感じます。コンピューターにいろいろな感情を理解させるということが基本ですけど、話している声や内容、表情からコミュニケーションのスキルを推定するということも盛んになってきてはいます。AIによる企業の採用面接みたいなものもそうですね。

杉原:確かにそういう面接は、実際にあるようですね。

岡田:面接で一言、二言答えたことから推測して、その人(のスキル)を判定するということですよね。あらゆる企業は、もうAIを様々活用しているのですが、採用には特定の人しか受からないとか、雇用差別・公平性の問題が出てきたりもしています。自分も就職面接のように実際に多くの人を呼んで、はじめて会った学生同士でディスカッションをしてもらい、そのビデオを人材派遣の会社に送って、人事の採用担当者に点数をつけてもらうという試みをしたことがあります。同じようにAIにも判断してもらったら、熟練の採用担当者と同じように人を選ぶのかどうかを検証しました。その実験は、学会でも良い評価をもらいましたが、アプリケーションとして見た場合、考慮すべき課題が多いと感じます。ですので、そういうスキル判定の技術を使って、スキルを上達させるための訓練に活かすことを、これからはやっていきたいですね。困っている人が喜ぶようなアプリとして機能できればと思っています。

感情を数値化するには、大きな課題がいくつもある

杉原:なるほど、それは興味深いですね。もうひとつお聞きしたいのが、“感情”っていうのは数値化も可視化もしにくいのではないか、ということです。実際に研究は進んでいるんでしょうか?

岡田:そうですね、難しいところも確かにあります。いま主にやっていることは、心理学者たちがこれまでに作った評価指標に則って、実験後に、いまあなたの感情はいくつでしたか? というように被験者に問いかけたり、第三者に被験者の映像を見せて、被験者の感情状態はどうなっていると考えられますか? というようにアンケートを書いてもったりする手法なんです。それをもとに人工知能が答えを導き出すわけですから、そもそものアンケートの答えが間違っていると、人工知能的にはもう破綻してしまう。そこが弱点でもありますね。

杉原:まず、ちゃんとしたデータを取ることが難しいんですね。

岡田:正解のデータがしっかりと作れなければ、人工知能は動けませんから。正直、感情って自分で数値をつけるのは難しいですよね。

杉原:自分でも自分の感情が一番わからないこともありますよね(笑)。

岡田:そういうものなんですよ(笑)。

杉原:以前の心理学者の研究だったり、研究論文なんかを追っかけながら、感情を紐解く要素を分析していくという手法はもちろんわかりますが、IoTを使ったデータ集めというのは、どうなんでしょう。世界的にはビッグデータは集まってきているんですか?

岡田:それも難しいところではあるんです。GAFAは、画像・音声を含めWeb上でたくさんの情報を集めていますが、普段の人同士の会話や、自然に対面コミュニケーションしているときのデータを膨大に集めるのは、まだまだ実際には難しいですよね。例えば感情データを集めるために、誰かが怒っているところをずっとビデオで撮るわけにもいかないですし、これからデータを取るので怒ってください、っていうのもおかしいですしね(笑)。多くの人が、AI speakerと友達のように頻繁に話す未来が来たら変わるかもしれませんが、AIの対話機能レベルから言って、それはもう少し先になりそうです。

杉原:確かにそうですね。

岡田:だから、自然にそういうデータをどうやったら取れるのか? っていうのは自分たちの研究の大きな課題ですね。

杉原:ライフログ的なところですね。とはいえ、無理やりIoT的な要素をくっつけたものを開発して使ってもらっても、結局使わなくなりますしね。

岡田:そうですよね、スマートウォッチとかもその一例だと思います。

杉原: スマートウォッチが出た当初はすぐに買いましたけど、3日後にはこれまで使っていた普通の時計が恋しくなってしまいました(笑)。でもいまは、Apple Watchなどがセンシングに使われていますよね。睡眠だったり、バイタルだったり。そういう使われ方をしているのは有意義だと思います。

岡田:そうですね、そのような使い方は興味深いです。最近私たちもスマートウォッチのようなセンサを使った研究を始めています。とはいえ自分たちの研究は、いまはデータを採取するのにビデオの前に人を座らせなきゃならないので、常に記録するのが難しい状況です。なので、毎日何かを記録すれば、健康がチェックできるとか、そういう多くの人に受け入れやすいアプリなどを通して、効率よくデータを取る方法を模索して行こうと思っています。

後編へつづく

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

安定の旨さはロボットがつくる時代へ?! 外食産業から始まる調理ロボットの可能性

二回目の緊急事態宣言によって、飲食店の営業が20時までと制限され、多くの店舗が苦境に立たされているのは周知の通り。営業補償や支援金について大きな論争となっているが、そもそも外食産業は慢性的な人手不足が問題視されており、そこには低い収益構造や劣悪な労働環境といった要因が温存されてきた。そう、コロナがあろうがなかろうが、そもそも外食産業は新陳代謝が激しく、継続するのが困難な産業であるのだ。そこに全自動の調理ロボットの開発と運用によって、こうした諸問題の解決と産業構造全体の変化の必要性を訴えるのがTechMagic(テックマジック)株式会社である。今回は同社の代表取締役社長・白木裕士氏をゲストに招き、編集長・杉原行里とのオンライン対談が行われた。

付加価値の低い作業をロボットが担うことで、
より付加価値の高い作業に人の手を割くべき

杉原:初めまして杉原と申します、よろしくお願いします。さて、最初にテックマジック社を設立した経緯について教えてください。

白木:そもそものきっかけは、祖母が栄養の偏った食生活をしていた現実を目の当たりにしたことです。高齢者だからこそ、栄養バランスが取れた美味しい食事を提供したい、そしてスマホのボタンを押したら、調理ロボットが栄養管理をしながら好きな料理を好きな時に作ってくれる世界を創り、人類を調理から解放したいという想いから、調理ロボットの開発を目指してテックマジックを創業しました。

杉原:御社のWEBサイトを拝見しましたが、テックマジックのロボットを導入しているのは大手外食チェーン店なのですね。

白木:はい、目指すべき姿は家庭用調理ロボットですが、現状では外食大手企業が我々の主な顧客となっています。外資系コンサルで勤めていた時に、外食産業の80%超が人手不足に悩まされ、たった5%という低い利益率であるという課題に気付きました。収益構造を調べてみると、人件費が30%、原材料費が40%、残った30%から家賃や光熱費を差し引いた5%未満が利益という企業が多いのです。そこで、外食向けには費用対効果を実感していただける調理ロボットを開発し、付加価値が比較的低い業務自動化ロボットとして厨房機器大手フジマック社と洗浄自動仕分けロボット、食品メーカーのキユーピー社とは盛付ロボットを開発しています。

杉原:この対談の前に調べて驚いたのは、日本全体で飲食業を含めたフードビジネスに関わる人が1000万人もいるということでした。人口の約1/12をも占める食産業の利益率が低いままだと、日本全体のGDPが豊かになることはありませんよね?

白木:そうですね。厚生労働省の予測では、日本の生産年齢人口は2040年までに20%減少する見通しがされており、当然その分のGDPも低下してしまいます。実は日本のGDP、雇用のシェアの約70%がサービス産業なんです。その中の食産業は、決して生産性が高くなく、改善余地はまだまだあり、仮に生産性を20%でも向上させることができれば、日本全体のGDPが改善する処方箋になると思うのです。社会課題である少子高齢化による労働力不足に対し、食産業の最適化は日本の将来のためにも取り組むべき重要な課題だと考えています。

杉原:日本の飲食店は開業からたった2年で50%以上が潰れるそうですね。10年以内の生存率が30%以下というデータも見ました。そうした中で、ロボットを導入することで、企業の持続可能年数が伸びるのでしょうか?

白木:正直なところ、まだデータで検証できていないのですが、調理ロボットを導入した店舗とそうでない店舗を比較して、利益率アップに貢献できていれば、生存率がグッと上がるはずです。これからさらなる検証を重ねて、数値化したいと思っています。

杉原:RDSでも自動化というソリューションを重要視しているので、テックマジックの取り組みに非常に共感しています。コロナウイルスの感染防止対策という点でも、調理の完全自動化は追い風になっているのではないでしょうか?

白木:コロナが食産業のDX加速の追い風になっているのは間違いないです。3~5年ほど未来が早くきていると感じています。特に社長や経営層がDXの意思決定をしている企業は動きが早いように感じています。私たちは、案件の依頼があっても挑戦すべき案件とお断りする案件を、消費者への付加価値の高さで棲み分けています。例えば、調理ロボットは、注文に応じた具材・ソースを定量的に供給し、決められた温度と時間で調理し、使用したフライパンを洗浄するという一連の作業を自動化していますが、この作業は比較的付加価値が低いと考えています。一方で接客をしたり、メニューの案内をしながら配膳する作業は、消費者にとっては付加価値が高い作業と考えており、従業員の方がやるべきだと思います。このように自動化領域をお客様と相談しながら、進めています。

杉原:確かに、以前僕が中国で体験した配膳ロボットは、ちょっと違和感がありました。やはり、付加価値の高い作業は人にゆだねる。ロボットで自動化した方がいいこととちゃんと切り分ける考え方は非常に共感できます。うまく分業することで得られる作業効率をいかにバリューに変えていくか、また料理の美味しさの分岐点はどの辺なのかもポイントですね、非常に面白い視点です。

チェーン店でのバイト経験で得た現場の問題と
コロナ禍における自動化ニーズの高まり

白木:調理ロボットに人生を賭けようと決意してコンサル会社を辞めてから、外食産業の現場を知りたくて、とある大手チェーン店でバイトをしたんです。

杉原:相手にとっては、超扱いづらいバイトが来ちゃった!という感じですよね(笑)。

白木:そうだったでしょうね(笑)。実際に働いてみて分かったのは、何から何までマニュアル化されていることでした。例えば、このメニューは、玉ねぎを30グラム計ってから、鍋に入れて、何分間加熱するということまで規定されているのです。でも、実際の現場ではおよそこれくらいだろうと一掴みして鍋に入れていたのです。これは調理の安定性にも欠けると思いましたし、衛生面でも疑問符が付きました。しかも、その作業をつまらなそうにやっている。こうした生産性が低くて付加価値の低い作業を、自動化できればいいなと。

杉原:おっしゃる通り、付加価値の低い単純作業は自動化されるべきだと思いますし、コロナ禍においてそのニーズは高まっていると感じています。ちなみに国内におけるコンペティターはあるのですか?

白木:今のところ国内で意識している企業はありません。ただ、中国や米国には、様々な調理ロボット企業が存在しているので、スピードとスケールを重視しないといけないと危機感はもっています。しかし、先ずは今一緒に取り組んでいるお客様の成長に繋がる実績を積むことが最優先だと思っています。

世界のどこにいても人気店の和食が食べられる
そんな未来がロボットによって可能になる

杉原:自分で調理をしている人なら実感できると思うのですが、いくらスケールメリットがあるとしても、美味しくて安全な食事にはそれなりのコストと手間がかかってしまう。その点では、タニタ食堂や大戸屋さんなどのレシピを、テックマジックのロボットが調理して、適正な値段で提供したら、たくさんのお客さんが集まるのではないでしょうか?

白木:確かにタニタ食堂さんや大戸屋さんで、我々のロボットを導入していただいて実績を作ることができればいいですね。美味しくて健康的な食事という、お客様に喜ばれるブランディングが不可欠になってくると考えます。

杉原:弊社ではウェルネス分野にも力を入れていて、人体スキャンによる身体データの可視化に力を入れています。歩行や座位のデータがあれば、リハビリや医療に転用できるし、今後ビッグデータ化できれば、より良い医療に貢献できると思うからです。弊社では医療行為はできませんが、まずはデータ解析によって、高齢者の転倒事故を防止することができると考えています。こうしたデータをもとにして、食を通じた健康、ウェルネスといった分野にもロボットが貢献できる可能性は大いにありますよね。

白木:栄養バランスに最も気を付けなければならない層といえば、生活習慣病のある方や高齢者になりますが、データ解析を利用して、こうした方に最適な食事を提供できることも今後視野に入れていきたいですね。一般的にロボットは日本の得意分野だと思われがちですが、突出して成功した日本企業がないというのも事実です。いかにリアリティを持って、ロボットが実社会で活躍できる場面を作ることができるのか? ようやく今、その取り組みが始まるところなのかなというのが実感です。

杉原:個人的には人間の脳や感覚を、絶対的なものとして捉えていないのです。例えば、どんなに美味しいコース料理をいただいたとしても、隣の客が騒がしくて不愉快だったら、決して美味しいとは思わないからです。では、人間にとって本当に美味しいということは、どういうことでどういう状態なのか? その定義は人によって変わってくるし、時代によっても変わってくると思うのです。ですから、AIロボットによって、美味しいを再定義することができたら、すごいイノベーションになるはずですよね。

白木:その人にとっての美味しさとはどういうものなのかということを、ある程度予測できるようになると面白いですね。こうして杉原さんとお話をしていると、調理ロボットの可能性がまだまだあるなと感じます。私は登山が好きで、何度か富士山にも登ったことがあるのですが、山頂で食べるカップラーメンって最高なんですよね。それが有名店の和食だったらと想像してみるんです。あくまで例え話ですが、調理ロボットを富士山の頂上に持っていって、人気店TOP50のメニューを再現することができたら、それは新しい価値を生み出したことになると思います。もちろん、ロボットを山頂まで持っていくのは至難の技ですけど(笑)。

杉原:富士山頂からの絶景を見ながら人気店の和食をいただくなんて、ものすごい体験価値ですよね。3Dプリンターがまさにその話と同じだと思うのです。データさえあれば、もはや場所はどこでもいいわけで、有名店の和食が海外でも再現できたら、大ヒットするでしょうね。そこでしか食べられないレシピを、ロボットによって再現してどこにいても食べられることができる世界がやってきたら本当にエキサイティングですよね。

白木裕士(しらき・ゆうじ)
高校から大学までカナダに単身留学。新卒で外資系経営コンサル会社・ボストンコンサルティンググループに入社。2018年2月にTechMagic株式会社を創業。ロボットを活用して生産性を高め、社会課題解決に向けたさまざまな開発に取り組んでいる。

 

関連記事を読む

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー