対談 CONVERSATION

行動から人の内面状態を読み取るAI!?岡田将吾の気になる研究 前編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。同氏の試みは、人間の内面の状態を理解するためのAIの新分野として世界から注目を浴びる。これらの研究は認知症の初期症状などを読み取る手がかりにもなるという。編集長・杉原が、最先端の研究の現状とその先に広がる未来について伺った。

人の行動から内面状態を理解するという試み

杉原:もともと岡田さんは、大学でいわゆるAIに関する研究をされていたんですか?

岡田:そうですね。人工知能を基本に、修士、学士と約5年間研究をしまして、少しずつ人の行動を予測するとか、人の行動からコンテキストを推定するということにフォーカスするようになりました。 例えば、この人のしゃべり方や使う言葉の特徴がこうなら、この人はロボットとのおしゃべりを楽しんでいるとか、いくつかの行動から、人の内面を予測するというような研究です。

杉原:今日は、話していて僕の思惑がバレるかもしれないから、サングラスか何か掛けたい気分です(笑)。

岡田:いや、僕自身は(内面を予測することは)できないですよ(笑)。システムにはできてしまうことがありますけどね。

人の行動から内面を読み取るという研究を続ける岡田氏。「最近は、手の動きと感情の関係性が気になる」という。

杉原:ならよかったです(笑)。岡田さんのそういった研究は、AIなどを通じて出口がたくさん出てきたという段階ですか?

岡田:そうですね。最近は動作を測るセンサーが安くなったりもして、状況が変わってきましたし、企業でも自分たちのような研究をしているところが出てきました。そういうプロジェクトに自分が加わることも増えてきて、出口は広がったと感じています。

杉原:もともと岡田さんがAIに興味を持ったのは、どういった経緯でしょうか?

岡田:最初は大学で物理をやっていたのですが、物理の世界っていろいろと難しくて挫折してしまいました。それで物理の先生にはちょっと失礼なんですが(笑)、もう少し目に見えてわかりやすいことがやりたいと思って、ロボットに顔の認識や画像の認識をさせて動かすという研究をやっている研究室に入ったんです。AIを研究し始めたのは、そこからですね。

杉原:岡田さんのような分野の研究者は、日本にどのくらいいらっしゃるんですか?

岡田:もちろん産官学で人工知能の研究をされているグループは山ほどありますけど、ピンポイントで、人の行動から内面状態を理解するみたいなことに焦点を当てているのは、僕たちと数えるくらいしかないです。

こちらは、2018年にジョージ・アンド・ショーン合同会社(現株式会社)と岡田研究室が共同で開設したG&S Labのイメージビジュアル。IoTデバイスであるbiblle(ビブル)を活用して、行動学習に特化した機械学習プログラムの開発を行っている。

もう多くの企業ではAIが採用面接をしている!?

杉原:表情から何かを読み取るということは、なんとなく僕もイメージできるんですが、そこから購買意欲だったり、そこに出口を見つけていくというのは、なんだか大学でやる研究っぽくないなと思いますね(笑)。

岡田:そう言われれば、そうかもしれないですね。

杉原:僕自身のイメージでは、大学の先生は研究を突き詰めて、あとはアウトプットを第三者に見つけてもらう、そんなスタイルが多いなと常々感じているんですよ。それが出口までしっかりとしていて、岡田さんの研究は面白いなと思います。

岡田:そう言っていただけるとありがたいです(笑)。確かにそれは狙っていて、研究室でコンピューターの前に座って突き詰めるのではなく、実際のインパクトのあるデータに対して、なんらかの回答を出していくほうが、世の中的にも出口がわかりやすいですし、そういうことは意識していますね。

岡田氏の研究に興味津々の杉原。感情という抽象的なものを数値化するという試みには、シンパシーを感じているようだ。

杉原:世界的にはどうなんですか?

岡田:コンピューティング分野の国際会議のような場には、アメリカ、ヨーロッパの有名大学の研究者が集まってきますが、そこでは感情を理解するという研究が一番多いように感じます。コンピューターにいろいろな感情を理解させるということが基本ですけど、話している声や内容、表情からコミュニケーションのスキルを推定するということも盛んになってきてはいます。AIによる企業の採用面接みたいなものもそうですね。

杉原:確かにそういう面接は、実際にあるようですね。

岡田:面接で一言、二言答えたことから推測して、その人(のスキル)を判定するということですよね。あらゆる企業は、もうAIを様々活用しているのですが、採用には特定の人しか受からないとか、雇用差別・公平性の問題が出てきたりもしています。自分も就職面接のように実際に多くの人を呼んで、はじめて会った学生同士でディスカッションをしてもらい、そのビデオを人材派遣の会社に送って、人事の採用担当者に点数をつけてもらうという試みをしたことがあります。同じようにAIにも判断してもらったら、熟練の採用担当者と同じように人を選ぶのかどうかを検証しました。その実験は、学会でも良い評価をもらいましたが、アプリケーションとして見た場合、考慮すべき課題が多いと感じます。ですので、そういうスキル判定の技術を使って、スキルを上達させるための訓練に活かすことを、これからはやっていきたいですね。困っている人が喜ぶようなアプリとして機能できればと思っています。

感情を数値化するには、大きな課題がいくつもある

杉原:なるほど、それは興味深いですね。もうひとつお聞きしたいのが、“感情”っていうのは数値化も可視化もしにくいのではないか、ということです。実際に研究は進んでいるんでしょうか?

岡田:そうですね、難しいところも確かにあります。いま主にやっていることは、心理学者たちがこれまでに作った評価指標に則って、実験後に、いまあなたの感情はいくつでしたか? というように被験者に問いかけたり、第三者に被験者の映像を見せて、被験者の感情状態はどうなっていると考えられますか? というようにアンケートを書いてもったりする手法なんです。それをもとに人工知能が答えを導き出すわけですから、そもそものアンケートの答えが間違っていると、人工知能的にはもう破綻してしまう。そこが弱点でもありますね。

杉原:まず、ちゃんとしたデータを取ることが難しいんですね。

岡田:正解のデータがしっかりと作れなければ、人工知能は動けませんから。正直、感情って自分で数値をつけるのは難しいですよね。

杉原:自分でも自分の感情が一番わからないこともありますよね(笑)。

岡田:そういうものなんですよ(笑)。

杉原:以前の心理学者の研究だったり、研究論文なんかを追っかけながら、感情を紐解く要素を分析していくという手法はもちろんわかりますが、IoTを使ったデータ集めというのは、どうなんでしょう。世界的にはビッグデータは集まってきているんですか?

岡田:それも難しいところではあるんです。GAFAは、画像・音声を含めWeb上でたくさんの情報を集めていますが、普段の人同士の会話や、自然に対面コミュニケーションしているときのデータを膨大に集めるのは、まだまだ実際には難しいですよね。例えば感情データを集めるために、誰かが怒っているところをずっとビデオで撮るわけにもいかないですし、これからデータを取るので怒ってください、っていうのもおかしいですしね(笑)。多くの人が、AI speakerと友達のように頻繁に話す未来が来たら変わるかもしれませんが、AIの対話機能レベルから言って、それはもう少し先になりそうです。

杉原:確かにそうですね。

岡田:だから、自然にそういうデータをどうやったら取れるのか? っていうのは自分たちの研究の大きな課題ですね。

杉原:ライフログ的なところですね。とはいえ、無理やりIoT的な要素をくっつけたものを開発して使ってもらっても、結局使わなくなりますしね。

岡田:そうですよね、スマートウォッチとかもその一例だと思います。

杉原: スマートウォッチが出た当初はすぐに買いましたけど、3日後にはこれまで使っていた普通の時計が恋しくなってしまいました(笑)。でもいまは、Apple Watchなどがセンシングに使われていますよね。睡眠だったり、バイタルだったり。そういう使われ方をしているのは有意義だと思います。

岡田:そうですね、そのような使い方は興味深いです。最近私たちもスマートウォッチのようなセンサを使った研究を始めています。とはいえ自分たちの研究は、いまはデータを採取するのにビデオの前に人を座らせなきゃならないので、常に記録するのが難しい状況です。なので、毎日何かを記録すれば、健康がチェックできるとか、そういう多くの人に受け入れやすいアプリなどを通して、効率よくデータを取る方法を模索して行こうと思っています。

後編へつづく

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

脳をヒントにしたAI開発が次のアーキテクチャを作る 自律型AIはどこまでいけるのか

吉田直子

脳科学とAIの融合分野において世界をリードする金井良太氏。金井氏が代表を務める株式会社アラヤでは、人間の脳の仕組みをAI技術に応用し、製造業を中心とした企業に最先端のAIソリューションを提供している。同社が得意とするエッジAIとは何か。そして、金井氏がプロジェクトマネージャーとして参加する内閣府のムーンショット事業の狙いとは。次世代AIの可能性について、HERO X 編集長・杉原行里が聞く!

クラウド不要のエッジAIとは

杉原:御社の強みであるエッジAIとは、なんでしょうか?

金井:エッジというのは、スマホやカメラのような端末のことです。一般的なAIは映像をクラウドにあげて、クラウド上で計算して答えを返しますが、エッジAIはスマホなどのデバイス上で計算するというものです。全部クラウド上で自動にすると、遅延も生じてしまうし、計算が重たいですよね。それを、ディープラーニングまで含めてデバイス上で実行するのがエッジAIという技術です。

杉原:クラウドにいったん上げなくていいということですね。

金井:まさにそうです。そのほうが安価だったりします。

杉原:なぜほかのシステムはクラウドに1回上げるということになっているのでしょうか? アイデアがないのか、気づいていないのか。

金井:みんなエッジでやりたいはずですが、なぜできないかというと計算が多いからです。そこで、計算を少なくするとか、計算をしやすいようにするとかの手法が、我々の技術ドメインになると思います。

杉原:変数が少なくなるという感じでしょうか?

金井:そうですね。入力のビット数を減らしたり、あとは枝刈りといって、計算する時にニューラルネット(人間の脳の働きを模倣する数理モデル)のつながりを減らしても同じような計算結果が出るようにするなどです。

杉原:そう伺うと単純な疑問が出てくるのですが、クラウドに上げて計算したものと、御社のエッジAIで計算したものとでは、この言葉が正しいかどうかわからないのですが、整合性は保てるのでしょうか?

金井:いえ、計算を簡単にしてしまうので、性能は落ちます。ただ性能を落とさずに計算を減らすというようなことを研究開発しています。自動運転などではかなり高い精度が求められますので、実際に我々が手掛けているものは工業製品の検査とかが多いですね。

今のAI開発は野球でいうと
ピッチャー量産型!?

杉原:御社のサイトに掲載されている「お掃除ロボットの例」(https://www.araya.org/about/feature/)ですが、要は機械による自動化は地図に沿って走行計画を作っていくけれど、自律AIなら「部屋をきれいにする」という目的を人間と共有する、という。この言い方が僕はすごくわかりやすかったです。

金井:今のAIの使われ方は、物事を自動化するところがメインで、その先に自律というアイデアがあります。自動というのは人がやり方を教えてその一部をAIに置き換える手法ですが、自律の場合は、目的を与えたらやり方を見つけ出すところまで、AIがやる。さっきのお掃除ロボットだったら部屋をきれいにするためには途中の問題も自分で解く必要がありますが、現状のディープラーニングは自動レベルのものが多いです。我々はそこに強化学習や深層強化学習と呼ばれる手法を取り入れていて、それを使うと自律への道が開けるのではないかと考えています。

杉原:面白いですね。御社はAIに意識を実装する研究もしているとお聞きしましたが、すごくシンプルな質問をしていいでしょうか? 意識ってなんですか?

金井:意識は感覚だと思いますね。ものを見た時は「見た」という感覚が生じるし、痛みを感じたときは「痛い」という感覚が生じる。そういう主観的な感覚のことを意識と言っています。

杉原:五感で感じられることが意識ということでしょうか?

金井:そう、感じる能力ですね。それをAIにもたせようと思ったら、結構具体的なことを考えなきゃいけない。自発性とか、想像力とか、AIが考えるというのはどういうことか、みたいなことを突き詰める必要があります。でも、そういうことを考えていくと、普通のAIとは違う作り方を思いつける。だから、新しいAIのアーキテクチャを考える時のヒントとして、意識をもたせるには?ということを研究したりはしますね。

杉原:この意識をもったAIが、どのような分野に入ってくるんでしょう?

金井:今、仮説としているのは、いわゆる汎用人工知能みたいなものが作られるということです。脳の中にはたくさんのAIが一緒にいる状態で、その合体方法を意識というプラットフォームが示している。今のAIは機能特化型といって、姿勢の推定や、表情の読み取りなど、1つのことに特化しています。だけど人間はそれをうまく組み合わせて考えることができる。だから、今いろいろな人が作っているAIを統合して、ひとつの強力なAIを作る方向になるのではないかと思います。

杉原:野球でいうと、今のAIはピッチャーばかり作っているみたいな感じですよね。でも、金井さんは「野球やろうぜ」と言っている。

金井:そんな感じですね。チームをちゃんと作ろう、という意味です。

ムーンショットで
BMIの技術開発

杉原:御社を知るきっかけになったのが、内閣府が進めているムーンショット型研究開発制度です。目標1のブロックで民間企業として参加しているのは御社だけですが、参加のきっかけはなんでしょうか?

金井:ムーンショットの目標は、「時間と空間と脳と身体の制約から解放される」という突拍子もないものです。これは自分に向いていそうだなと思って、普通に応募しました。

杉原:今回ムーンショット1で、2050年までに御社が達成したい目標はありますか?

金井:まず2030年までにBMI(ブレインマシーンインターフェース)を実用化できるレベルをめざしています。BMIには侵襲・非侵襲といろいろあります。最初、イーロン・マスクがやっているみたいに侵襲で脳に電極を埋め込むことを考えていたのですが、それ以外にも非侵襲で普通に脳波をとったり、あとは意外と外から画像だけ解析すればいけるんじゃないかと思って。脳を見なくても何をやろうとしているかが予測できればよいので、AIのノウハウを最大限応用すれば、侵襲性が低くても人が何か考えただけでモノを動かすくらいのことができるのではないかと思っています。

杉原:PoC(プルーフオブコンセプト)としてどのあたりに入りそうですか? エンタメでしょうか? それとも老人や言語が伝えにくくなった方たちに、最初に実証していくのか。

金井:侵襲と非侵襲で使える場所が違うと思います。侵襲のほうは完全に四肢麻痺やALSのかたの身体の補完という医療用の目的。非侵襲のほうは意外に自分自身のモニタリングみたいなものに使われるんじゃないでしょうか。まず自分の疲れを知るとか、鬱や過労を防止するみたいに使って、そのあとにインターフェースとして検討されていくと思います。たぶん、声を出さないでしゃべるくらいにはなると思います。

杉原:すごいですね。例えば触覚センサーみたいなものをつけて、より重さや触覚が伝わっていくと、自宅でロボットを遠隔操作することもできますよね。

金井:そうですね。入力のところを簡単にすればいいのかなと思っています。BMIですごくいいものを作ろうとすると、精密なデータが脳からとれて、ロボットのほうも自由度が高いイメージになりますが、そこまでいかなくても「前に進みたい」と思ったら、歩くところはもう全部半自動でロボティクスでやってしまえばいいのかなと。

事業者のほうが脳の研究は進んでいる

杉原:HERO Xはスタートアップのかたも読んでいるので、起業の時に大事にしていたことをお聞きしたいと思います。

金井:起業をする時は、少しでも前に進みたいと思っていましたね。進まないのが一番つまらないので。あとから考えるといろいろ失敗もありましたが。

杉原:研究領域だけではなく、実装領域も兼ね備えるための起業だったのでしょうか?

金井:そうですね。研究でできることは限られているんです。特に脳の画像を見て、個人の特徴、例えば知性とか性格とかを読み取ることはかなりできていたので、そういうことを役立てたいと思っていました。脳の研究も、Googleのような企業が圧倒的になってしまって、アカデミックな研究よりも自分が事業を作ったほうが研究が進むのではないかと思ったんです。起業したい人からよく相談を受けるのですが、実際にはなかなか起業しないですね。やってみればいいんじゃないかと思うのですが。

杉原:僕もよくそういう相談を受けますが、悩んでいる方が心に悪いですよね。

金井:やったほうがいろいろ得られるとは思いますよね。

杉原:最後に、今後AIはどんな風に生活に入り込んでいくと思いますか?

金井:着実に様々なところに使われ始めるとは思います。ただスマホやネットレベルの、誰も気づかないけれど、実は広範囲に使われていたみたいな存在になっていくのではないかと。

杉原:人々がそれを実感して気づくタイミングって15年、20年くらい先ですか? それとも、何気なく生活がアップデートされていって、そもそも気づかない?

金井:後者だと思いますね。パソコンが速くなっても気づかないみたいなことだと思います。

杉原:気づいたら20年前よりかなりよくなっているよね、みたいな感じですね。金井さんのAIに対するアプローチってすごく新鮮というか、ほかのかたからあまり聞いたことないなと思います。会社の事業としてはBtoBが多いのでしょうか?

金井:ほぼBtoBのAI開発と、R&Dのお手伝いですね。自動車の会社が多いです。

杉原:ぜひレース業界もよろしくお願いします。マシンも、いまや走るセンサーといわれていますから。今日はどうもありがとうございました。

金井良太(かない・りょうた)
株式会社アラヤ創業者。2000年京都大学理学部卒業後、2005年 オランダ・ユトレヒト大学で人間の視覚情報処理メカニズムの研究でPhD取得(Cum Laude)。米国カルフォルニア工科大学、英国ユニバーシティ・カレッジ・ロンドンにて研究員。JSTさきがけ研究員、英国サセックス大学准教授(認知神経科学)を経て、2013年に株式会社アラヤを創業。神経科学と情報理論の融合により、脳に意識が生まれる原理やAIに意識を実装する研究に従事すると同時に、産業界におけるAIと脳科学の実用化に取り組む。文部科学大臣表彰若手科学者賞、株式会社アラヤとしてJEITA ベンチャー賞(2020)、ET/IoT Technology Award(2019)など多数受賞。2020年より、内閣府ムーンショット事業プロジェクトマネージャーとしてブレイン・マシン・インターフェースの実用化に取り組む。

関連記事を読む

(text: 吉田直子)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー