対談 CONVERSATION

行動から人の内面状態を読み取るAI!?岡田将吾の気になる研究 前編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。同氏の試みは、人間の内面の状態を理解するためのAIの新分野として世界から注目を浴びる。これらの研究は認知症の初期症状などを読み取る手がかりにもなるという。編集長・杉原が、最先端の研究の現状とその先に広がる未来について伺った。

人の行動から内面状態を理解するという試み

杉原:もともと岡田さんは、大学でいわゆるAIに関する研究をされていたんですか?

岡田:そうですね。人工知能を基本に、修士、学士と約5年間研究をしまして、少しずつ人の行動を予測するとか、人の行動からコンテキストを推定するということにフォーカスするようになりました。 例えば、この人のしゃべり方や使う言葉の特徴がこうなら、この人はロボットとのおしゃべりを楽しんでいるとか、いくつかの行動から、人の内面を予測するというような研究です。

杉原:今日は、話していて僕の思惑がバレるかもしれないから、サングラスか何か掛けたい気分です(笑)。

岡田:いや、僕自身は(内面を予測することは)できないですよ(笑)。システムにはできてしまうことがありますけどね。

人の行動から内面を読み取るという研究を続ける岡田氏。「最近は、手の動きと感情の関係性が気になる」という。

杉原:ならよかったです(笑)。岡田さんのそういった研究は、AIなどを通じて出口がたくさん出てきたという段階ですか?

岡田:そうですね。最近は動作を測るセンサーが安くなったりもして、状況が変わってきましたし、企業でも自分たちのような研究をしているところが出てきました。そういうプロジェクトに自分が加わることも増えてきて、出口は広がったと感じています。

杉原:もともと岡田さんがAIに興味を持ったのは、どういった経緯でしょうか?

岡田:最初は大学で物理をやっていたのですが、物理の世界っていろいろと難しくて挫折してしまいました。それで物理の先生にはちょっと失礼なんですが(笑)、もう少し目に見えてわかりやすいことがやりたいと思って、ロボットに顔の認識や画像の認識をさせて動かすという研究をやっている研究室に入ったんです。AIを研究し始めたのは、そこからですね。

杉原:岡田さんのような分野の研究者は、日本にどのくらいいらっしゃるんですか?

岡田:もちろん産官学で人工知能の研究をされているグループは山ほどありますけど、ピンポイントで、人の行動から内面状態を理解するみたいなことに焦点を当てているのは、僕たちと数えるくらいしかないです。

こちらは、2018年にジョージ・アンド・ショーン合同会社(現株式会社)と岡田研究室が共同で開設したG&S Labのイメージビジュアル。IoTデバイスであるbiblle(ビブル)を活用して、行動学習に特化した機械学習プログラムの開発を行っている。

もう多くの企業ではAIが採用面接をしている!?

杉原:表情から何かを読み取るということは、なんとなく僕もイメージできるんですが、そこから購買意欲だったり、そこに出口を見つけていくというのは、なんだか大学でやる研究っぽくないなと思いますね(笑)。

岡田:そう言われれば、そうかもしれないですね。

杉原:僕自身のイメージでは、大学の先生は研究を突き詰めて、あとはアウトプットを第三者に見つけてもらう、そんなスタイルが多いなと常々感じているんですよ。それが出口までしっかりとしていて、岡田さんの研究は面白いなと思います。

岡田:そう言っていただけるとありがたいです(笑)。確かにそれは狙っていて、研究室でコンピューターの前に座って突き詰めるのではなく、実際のインパクトのあるデータに対して、なんらかの回答を出していくほうが、世の中的にも出口がわかりやすいですし、そういうことは意識していますね。

岡田氏の研究に興味津々の杉原。感情という抽象的なものを数値化するという試みには、シンパシーを感じているようだ。

杉原:世界的にはどうなんですか?

岡田:コンピューティング分野の国際会議のような場には、アメリカ、ヨーロッパの有名大学の研究者が集まってきますが、そこでは感情を理解するという研究が一番多いように感じます。コンピューターにいろいろな感情を理解させるということが基本ですけど、話している声や内容、表情からコミュニケーションのスキルを推定するということも盛んになってきてはいます。AIによる企業の採用面接みたいなものもそうですね。

杉原:確かにそういう面接は、実際にあるようですね。

岡田:面接で一言、二言答えたことから推測して、その人(のスキル)を判定するということですよね。あらゆる企業は、もうAIを様々活用しているのですが、採用には特定の人しか受からないとか、雇用差別・公平性の問題が出てきたりもしています。自分も就職面接のように実際に多くの人を呼んで、はじめて会った学生同士でディスカッションをしてもらい、そのビデオを人材派遣の会社に送って、人事の採用担当者に点数をつけてもらうという試みをしたことがあります。同じようにAIにも判断してもらったら、熟練の採用担当者と同じように人を選ぶのかどうかを検証しました。その実験は、学会でも良い評価をもらいましたが、アプリケーションとして見た場合、考慮すべき課題が多いと感じます。ですので、そういうスキル判定の技術を使って、スキルを上達させるための訓練に活かすことを、これからはやっていきたいですね。困っている人が喜ぶようなアプリとして機能できればと思っています。

感情を数値化するには、大きな課題がいくつもある

杉原:なるほど、それは興味深いですね。もうひとつお聞きしたいのが、“感情”っていうのは数値化も可視化もしにくいのではないか、ということです。実際に研究は進んでいるんでしょうか?

岡田:そうですね、難しいところも確かにあります。いま主にやっていることは、心理学者たちがこれまでに作った評価指標に則って、実験後に、いまあなたの感情はいくつでしたか? というように被験者に問いかけたり、第三者に被験者の映像を見せて、被験者の感情状態はどうなっていると考えられますか? というようにアンケートを書いてもったりする手法なんです。それをもとに人工知能が答えを導き出すわけですから、そもそものアンケートの答えが間違っていると、人工知能的にはもう破綻してしまう。そこが弱点でもありますね。

杉原:まず、ちゃんとしたデータを取ることが難しいんですね。

岡田:正解のデータがしっかりと作れなければ、人工知能は動けませんから。正直、感情って自分で数値をつけるのは難しいですよね。

杉原:自分でも自分の感情が一番わからないこともありますよね(笑)。

岡田:そういうものなんですよ(笑)。

杉原:以前の心理学者の研究だったり、研究論文なんかを追っかけながら、感情を紐解く要素を分析していくという手法はもちろんわかりますが、IoTを使ったデータ集めというのは、どうなんでしょう。世界的にはビッグデータは集まってきているんですか?

岡田:それも難しいところではあるんです。GAFAは、画像・音声を含めWeb上でたくさんの情報を集めていますが、普段の人同士の会話や、自然に対面コミュニケーションしているときのデータを膨大に集めるのは、まだまだ実際には難しいですよね。例えば感情データを集めるために、誰かが怒っているところをずっとビデオで撮るわけにもいかないですし、これからデータを取るので怒ってください、っていうのもおかしいですしね(笑)。多くの人が、AI speakerと友達のように頻繁に話す未来が来たら変わるかもしれませんが、AIの対話機能レベルから言って、それはもう少し先になりそうです。

杉原:確かにそうですね。

岡田:だから、自然にそういうデータをどうやったら取れるのか? っていうのは自分たちの研究の大きな課題ですね。

杉原:ライフログ的なところですね。とはいえ、無理やりIoT的な要素をくっつけたものを開発して使ってもらっても、結局使わなくなりますしね。

岡田:そうですよね、スマートウォッチとかもその一例だと思います。

杉原: スマートウォッチが出た当初はすぐに買いましたけど、3日後にはこれまで使っていた普通の時計が恋しくなってしまいました(笑)。でもいまは、Apple Watchなどがセンシングに使われていますよね。睡眠だったり、バイタルだったり。そういう使われ方をしているのは有意義だと思います。

岡田:そうですね、そのような使い方は興味深いです。最近私たちもスマートウォッチのようなセンサを使った研究を始めています。とはいえ自分たちの研究は、いまはデータを採取するのにビデオの前に人を座らせなきゃならないので、常に記録するのが難しい状況です。なので、毎日何かを記録すれば、健康がチェックできるとか、そういう多くの人に受け入れやすいアプリなどを通して、効率よくデータを取る方法を模索して行こうと思っています。

後編へつづく

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

移動センシングが営業戦略と直結!? プラットフォーマーを狙うベンチャー

宮本さおり

ハンドルを握るだけで、ドライバーが行きたい先や、やりたいことを予測してくれる、そんな車との付き合い方ができる世の中が目前に迫ってきている。移動を軸にセンシング技術を駆使することでそんな未来を描くひとりが、株式会社スマートドライブCEOの北川烈氏だ。DX2.0という構想を掲げる北川氏に直接お話を聞いた。

データ蓄積が可能にする
一歩先の日常

杉原:DX2.0を掲げておられますが、具体的にどういうものなのでしょうか。

北川:DX2.0というのは移動にまつわるデータを集積し、可視化だけでなく問題解決のために活用して試みです。ドライブレコーダーはもちろん、今後は様々な移動にまつわるセンサー、コネクティッドカーなど、様々なデバイスのデータを蓄積し、つなげていくと、いろいろなことができるようになると思っています。その中で、プラットフォーマーの役割を担うのがスマートドライブの役目だと考えています。例えば、車を購入したとします。車を安全に動かすためにはタイヤの減りに合わせて交換するなど、メンテナンスが必要になりますが、それを定期点検ではなくデータに基づいてする方はあまり多くありません。

杉原:そうなんですよね。僕は車が好きで、運転も好きなので、タイヤを交換しない人は信じられないと思うのですが、タイヤの減りが原因でスリップ事故に繋がる例はいくつもありますから、メンテナンスは大事ですよね。

北川:そうなんですよね。だから、例えば、タイヤの減り具合をセンシングして、替え時を教えてくれるようにするとか、そういうこともできてくる。

杉原:僕は北川さんの事業に大変共感していて、そのデータというものが、優位性を保ちながら取れる状況になってくると、いままで普通に生活していたものが、バリューになってくるわけじゃないですか。例えば、僕は高齢者が増えていることって結構ラッキーなことだと捉えています。高齢者が増えた分だけモニターが増えた!と。

先進国という言い方が合っているのかは分かりませんが、他国と比較してもいち早く超高齢化社会を迎えるということは、ソフトウェア・ハードウェアを含めて新たなサービスが生まれやすい環境ともとれます。そして、それを輸出できるわけで、仮に、高齢者にまつわるデータバンキングができれば、それをトレースすることだってできる。

北川:そうとも言えますよね。

杉原:前回の北川さんのお話からすると、このDX2.0ともうひとつ、企業運営に関わる移動にまつわるセンシングをされていて、そちらはDX1.0と呼ばれていますが、スマートドライブさんで手掛けられているこの2つの事業というのは、どちらも同じくらい注力されているんでしょうか?

北川:そうですね。例えるなら…プレイステーションとかそういったものに近いかもしれません。いろいろな方が弊社のプラットフォーム上にサービスを作って欲しいと考えていますが、プレイステーションのように各自で色んなゲームを作ってもらい、あとは放置というわけにはいかず、自分たち自身でもおもしろいソフトを作ったり、パートナー企業の支援もしないと誰もこの上に作ろうと思わないというのと同じで、私たち自身もプラットフォームを使って、いいなと思えるサービスを作るし、それがあるからパートナーがこの上に何かを作りたいと思ってくれる。そこの両輪だと思っているので、どちらも同じくらい力を入れています。

狭い意味のMaaSだけでは
価値があぶれる時代へ

杉原:お聞きしたいのが、御社のビジネスの側面で切り離せないのが、世の中で言われている『MaaS(Mobility as a Service)』だと思うんですけど、僕は東京でのMaaSについては少し厳しいのではないかなと感じているんです。日本は海外と比べると既にMaaS化されているというか。個人的には日本においてモビリティーサービス的なソフトウエアが必要になってくるのは、過疎化が進んでいたり高齢者の多い地域なんじゃないかなと。

北川:私もそのとおりだと思います。実際東京に住んでいたら、グーグルマップとスイカがあれば全部できてしまうので、MaaSというのはニーズが低いかもしれない。やはりあるとすれば、杉原さんのおっしゃる通り地方とか過疎化の進んでいる地域なのかなという気はしますね。

私がよく言っているのは広義のMaaSと狭義のMaaSで、今注目されているMaaSって、もっと広い領域までカバーされていて、我々のようなデータプラットフォームもそうですし、お客様のデータを集約してお客様と接点を持つような会社もMaaSと言われることが多いと思うんです。これまでは自動車メーカーは○○がいい、保険会社は○○がいいといったようなBtoCで顧客に直接個別のマーケティングをしていたものが、間にMaaSの事業者が入っていくことで、エンドユーザーからすればどんな車だろうが保険だろうが関係ない。これまで直接顧客接点を持っていた自動車メーカーや保険会社が、MaaS事業者を相手にする比率が高まり、そういうBtoBのビジネスに変わっていくというところが一番大きな変化かなと。そういう意味では我々もお客様の情報を預かって、データによっていろいろと最適化していくことで、ある意味ではMaaSに近い領域をやっていけるんじゃないかなと感じています。

杉原:広義となると、僕らの手掛けているモビリティーなんかも入ってくると思うんですけど、狭義なところでいくと、2025年には約30%が65歳以上になるといわれていますが、それは中央値であって、地方に至ってはすでに40%近い。データサイエンティフィックなところで言うと、バスがいつ来るのか、そのバスを利用する高齢者はいつ買い物に行くのか、その時間帯にバスは必要なのかということはスマートドライブさんの事業でされていることを活用すれば最適解を導き出せますよね。ということは、イノベーションが起きやすい。

移動を戦略と捉え
営業活動に役立てるためのセンシング

北川:地方にある移動式スーパーとか、EVのカーシェアとか、いわゆるGoogleアナリティクスのリアル版のようなことは今まで可視化されていなかったんですけど、WEBサイトでいうGoogleアナリティクスみたいなものが弊社にはあるので、それを使うと、何時にはどういうお客様が何人来てとか、7時以降は帰りのバスだけでいいとか、ここにカーシェアを置いても使わないからこの時間帯はこっちに持ってこよう、というようなことが出来るんですよね。

杉原:だから、スマートドライブさんのプラットフォームを使えば、要は僕らがそれを使う技術を持っていれば、そのプラットフォームを使うユーザーになれるということですよね。つまり、オープンプラットフォーム。

北川:そうです。裏側に我々が入っているということです。ですので、MaaS事業者と言われる方々の裏側に我々がサポートとして入るというようなケースも出てくるということです。

(プロフィール)
北川烈(きたがわ・れつ)
SmartDrive 代表取締役 (CEO) 。慶應義塾大学在籍時に国内ベンチャーでインターンを経験、複数の新規事業立ち上げに参加。その後、1年間米国に留学、エンジニアリングを学んだのち、東京大学大学院に進学。研究分野は移動体のデータ分析。その中で、今後自動車のデータ活用、EV、自動運転技術が今後の移動を大きく変えていくことに感銘を受け、在学中にSmartDriveを創業した。
https://smartdrive.co.jp

(text: 宮本さおり)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー