対談 CONVERSATION

あなたの疾病リスクが予知可能に 東芝が仕掛ける近未来の医療

宮本さおり

スマートウォッチの出現が私たちの健康管理のあり方を大きく変えた近年。データを取得することで健康増進につなげる動きはどのように加速しているのか。この夏、「疾病リスク予測AI」のサービスを開始した株式会社東芝、東芝デジタルソリューションズ株式会社を編集長・杉原行里が訪ねた。

人々の健康に対する意識の高まりが見られる昨今、その後押しをしたものとして、スマートウォッチの存在は大きいだろう。日本国内における販売台数は年々増加、ICT市場調査コンサルティングのMM総研による調査では、2019年度には過去最高の191.4万台を記録、2020年度の予想数値は263.5万台と、さらに数字が伸びそうだという。利用者がよく使う機能でみると、最も多いのがウォーキング・ランニングの記録(消費カロリー、歩数、移動距離、ランニング機能)63.7%、次いで「心拍計」などが続き、「睡眠時の記録」についても47.4%がよく使う機能としてあげている。

自分の体の状態を客観的な数字を持って教えてくれるアイテムへの関心は、今後も高まりを見せるだろう。そんな中、東芝グループはAIを使い将来の疾病リスクを予測する「疾病リスク予測AI」の運用をはじめた。なぜこうした取り組みをはじめたのか。開発、運用に携わるチームの皆さんを編集長・杉原が訪ねた。

左から 東芝デジタルソリューションズ株式会社 ICTソリューション事業部保険ソリューション営業部営業第一担当主任太田和行氏、同事業部保険ソリューション部技術第二担当参事 栗田英和氏、株式会社東芝 技術企画部ライフサイエンス推進室主務 山口泰平氏

機械の故障を
見分ける技術を応用

杉原:今日はお時間をいただきありがとうございます。まず、現在の取り組みについて伺いたいのですが、病気の超早期発見や個別化治療という部分について、近未来の医療がどうなるのかをお伺いしたいのですが、こちらのチームではAIを使って疾病リスクを予測するものをされているとうかがいました。

山口:東芝グループは新規事業領域として精密医療に取組んでおり、病気の超早期発見や個別化治療に関わる研究開発、社会実装を進めています。その中の1つである「疾病リスク予測AI」は、健康診断のデータから将来の疾病リスクを予測する技術です。

杉原:「こうした病気にかかる可能性がありますよ」という予測を出すということですよね。

栗田:はい。糖尿病・高血圧症・脂質異常症・肝機能障害・腎機能障害・肥満症の6つの生活習慣病に関するリスクを、1回分の健康診断データを基に、6年先まで予測します。

杉原:具体的にはどのようにして予測が導き出されるのでしょうか?

山口:企業では、社員の健康診断を毎年行っていますよね。東芝にも健康診断データや、投薬データが長期間にわたって同じフォーマットで蓄積されています。これらのデータを使って何かできないかというところが一つありました。

加えて、我々には製造現場で培ってきたAI技術があります。例えば、半導体の製造現場で欠陥品を検出する際や、製造機械設備が故障する際の予兆を見つけるときなどに、AI技術を活用してきました。こういった技術は欠陥検出や機械故障を予測するためのものですが、対象を人間に置き換えると、体の不調、病気の発症を予測できるのではないかという発想から開発がはじまりました。

一気通貫したソリューションについて話す山口氏

こういったデータと技術を組み合わせることで、将来病気になるリスクを予測しています。この技術は超早期発見というよりも、どちらかいえば健常な人たちが将来病気になるのを予測するというものです。超早期発見というキーワードでいうと、マイクロRNAという技術があり、研究開発を進めています。わずかな量の血液から13種のガンを網羅的に検出する技術です。

杉原:それにはデータが必要ですよね。

山口:わたしたちとしては予防から治療まで、一気通貫したソリューションとして提供したいと考えていますので、その元になるのがやはりデータだと思っています。

健康を支える
ソリューションとは

杉原:「疾病リスク予測AI」は、ソリューションの一部ということですね。

太田:はい。健康診断データの数値を見るだけではピンとこなかった病気のリスクを可視化することで、生活習慣病の予防・改善につなげるソリューションです。

疾病リスク予測AIにより、生活習慣病の予防・改善に貢献したいと話す太田氏。

山口:もう一つデータという観点で言うと、我々は遺伝子解析事業も行っています。遺伝子データというのは私たちの体の設計図です。設計図に記載されている体質情報と健康診断の経年データや、服薬の情報を組み合わせることで、例えば、同じ薬を飲んでいる人たちの中で、効果に差が出る原因を調べることもできるようになるかもしれません。

さらに、年1回の健康診断だけではなく、食事や活動量などの生活データを組み合わせていくことで、個人を起点に医療・ヘルスケアデータを一本につなげていきたいと思います。

ウェアラブルだけ、ゲノムだけ、検診だけというところは多いのですが、弊社はぶつ切れではなく、つなぎ合わせることができる、弊社の考える精密医療の形はそういうところだと思っています。

東芝が考える生活習慣改善ソリューションの提案画面例。組み合わせたデータを元に、近い将来の疾病リスク予測を可視化、どこを気にかけると良いかを分かりやすく教えてくれる。

杉原:確かに、ただデータが取れるだけで終わってはもったいないですよね。一気通貫というのは面白いですし、経年でのデータ蓄積があるというのはすごく羨ましいところですね。これを使って今後はどのような取り組みをしていきたいと考えておられるのでしょうか?

山口:個人のこれらのデータを収集、分析し、その結果に基づいて層別化を行い、各層グループ毎に最適な予防法、治療法を提案していきたいと考えています。

杉原:実際今、どのような形で、どれくらいの量のデータを集められているのですか?

山口:今は東芝の従業員を対象に、精密医療のビジョンに賛同いただける方々から、ゲノムデータ、健診データ、レセプトデータの提供をお願いしています。当然、ご本人の同意をいただきながら進めており、その数は1万人を超えています。

杉原:その数字は予想よりも多かったのでしょうか、少なかったのでしょうか?

山口:まずは1万人を目標に進めてきましたが、思ったよりも早く1万人の同意が得られた印象です。

私たちの精密医療ビジョンの1つに「次の世代も見据えた予防医療に、デジタルの力を活かします」というものがあります。
現時点では、従業員に対して、遺伝子検査の結果から病気のリスクをお知らせすることを全く行っていないんです。あくまでも、医療のため、一個人だけでなく同じ境遇に悩んでいる人のためや、次の世代の予防医療のために残す健康資産という考えにご賛同頂いた方々に参加頂いています。

杉原:先ほど、次世代の医療に関するお話も出ていましたが、今回得たデータの活用方法について、御社として何か具体的なお考えはあるのでしょうか?

山口:ゲノムデータ、健康診断データ、レセプトデータ、更にウェアラブルデータ等を活用した日常データを繋ぎ合わせることで、医療発展のための研究だけなく、ヘルスケア産業自体の発展に貢献できる仕組みを作っていきたいと思っています。

センシング活用に
欠かせない倫理観

杉原:HERO Xはすごいコアなファンが多いのですが、私が思うに、その方たちって1つだけ共通項があるんです。いろいろなことを自分ごと化して見れているんですよね。例えば、ガンの超早期発見の話を聞いた時にスッと入ってくるという方は、おそらく近しい人がガンを経験したり、ガンで亡くなったりしていることが多いと思うのです。1万人の同意を得られたというのは、こうした自分ごと化されている方なのではないかと想像します。何か未来のためにっていう医療への期待が込もっているのを感じます。

未来のためにというのは僕らもよくテーマとして言っているところなのですが、正直結構勘違いされやすい。僕らの場合、パラリンピアンとか、いろんな疾患を持ってる方たちを助けようみたいな媒体に思われがちですけれど、狭くそこだけに焦点を絞っているわけではなく、どちらかと言えばそこで、その技術がどうなって進化していくのか、そのアイデアがどう大きくなっていくのかというところに注力を注いでいるので、今日のお話はすごく共感するのです。ただ、データを取られることが、まるで丸裸にされるように感じる方もいます。これよりも先、より多くの人たちに賛同を得ていくための壁はあるのではないでしょうか。

山口:そこはおっしゃる通りだと思っています。個人それぞれに考え方は当然違いますのでより多くの方に賛同頂くには、自分ごと化できるような小さな成功体験を少しずつ示していくしかないと思っています。

我々のビジョンにご賛同頂きゲノムデータまでをも提供してくれる方々に対して、中途半端なデータは返せないと思っています。しっかりとした研究に基づいたエビデンスにより、〝これなら返せる〟というものを作っていく必要があります。かつ、例えば「ある疾患のリスクがあります」で終わらせるのではなく、その先に「遺伝的背景から、あなたにはこういった予防がお勧めです」ということまでお伝えする、ここまでがセットになって初めてお戻しすることができると思っています。

杉原:ローマは1日にして成らないのだから、その30年、50年、100年というロングスパンで考えたときに、もしかしたら自分のひ孫あたりにそれらがフィードバックされるという想像力を持ち合わせているかいないかですよね。今日はありがとうございました。

(text: 宮本さおり)

(photo: 小林鉄兵)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

勝負はたったの0.5秒 どう防ぐ?子どもにふりかかる危険な事故

宇都宮弘子

日本における子どもの死亡原因の統計、あまり知られていないのだが、いつも上位にくるのが事故による死亡だ。高所からの転落など、子どもの思わぬ行動が死亡につながるケースは少なくない。子どもにとっての本当の安全とは何か、センシングを使い導き出そうとする動きが出てきている。これまでの常識を疑い、センシング技術で子どもの安全性向上に取り組む東京工業大学の西田佳史教授は、「親が『目を離してはいけない』から『目を離してもいい』環境へとパラダイムシフトする」と話す。いったいどういうことなのか。自分事化をきっかけに描く一歩先の未来とは? 編集長・杉原行里が訪ねた。

子どもが生まれたことを
きっかけに研究をスタート
保護者の見守りの限界

杉原:今日はよろしくお願いします。早速ですが、西田教授がセンシング技術を使って子どもの安全性向上の分野を研究しようと思われたきっかけは?

西田:単純ですよ、子どもが生まれたからです(笑)。当時、福祉工学という分野はありましたが、主に高齢者が対象で、子どもの安全に寄与するものはなかったんです。例えばISO(国際標準化機構)やJIS(日本産業規格)の定義は「受け入れることのできない危険がないこと」ですが、やっぱり危険はある。危険がないことと定義するのではなくて、危険を扱える能力を備えた状態の社会に変えていきたいと思ったんです。

特に子どもの事故は、身体の機能変化と非常に関わりが深いと思っています。身体はもちろん、認知機能や運動能力が急速に発達する時期なので、昨日できなかったことが今日できるようになる。でも事故が起こるとまず、子どもから目を離した保護者の見守り責任が問われる。しかしその事故原因の多くは、そもそも我々が設計した環境やデザインが生み出してしまっているのです。そこで、デザインによって変えられる可能性があるんじゃないかなと考えたんです。

怪我をしにくい環境はできると語る西田教授

杉原:最近、電気ケトルで火傷をした子どもの話を聞いたばかりです。なぜそんな危険なデザイン構造になっているのか疑問を感じていたところです。

西田:そうなんです。人間の注意力に頼る「見守り」だけで事故を防ぐことはできない。それを証明するためには、実際の生活の場で起こり得る現象を切り離さず、計測をして理解するということが必要でした。そこで、子どもの実際の行動を画像処理して、子どもの転倒時間や、電気ケトルが倒れて熱湯がもれ広がるのにかかる時間、物が落ちたり倒れたりする時間を測定しました。子どもが転倒するのにかかる時間は平均0.5秒。これは、例え1メートルという至近距離で見守っていたとしても、人間の見守り能力に頼るだけで防ぐにはどうしても難しい。

また例えば、子どもが歯磨きをしながら動き回って転んで怪我をしてしまうという事故も多発しています。いくら「止まって磨きなさい!」と親が言っても、言うことを聞いてくれる子どもばかりではない。見守りだけでは不十分だから、事故が後を絶たないと僕は思っています。

杉原:本当にそうで、保護者の見守りだけで事故を防ぐには限界がありますよね。親がどれだけ注意していても、子どもってじっとしていられない。

西田:そうなんです。さらに我々は怪我のデータを統計的に処理するために、まずは病院の協力を得て子どもが怪我をした部位のデータを集めて可視化しました。ビッグデータを元に効果として結果を出すことができるようになったんです。例えば、歯ブラシの事故では、目を離さないで見守ることに限界があるなら、目を離してもいい環境・デザインをつくろうではないかと、私が「ABC理論」と呼んでいる、Ⓐ変えたいもの、Ⓑ変えられないもの、Ⓒ変えられるもののなかで、Ⓒの“変えられるもの”として、転倒データを元に歯ブラシのデザインを変えることができたんです。

研究室にはベビーベットやベビーサークルなど、実際に家庭で使う家具などが並んでいる。

杉原:そうだったんですか。最近は曲がる歯ブラシが販売されていますよね。規格化は考えられていないのですか?

西田:いい質問ですね。歯ブラシに限らず、最初はとにかく問題を提示することが大事だと考えているんです。そこから企業との共同研究がはじまって、プロダクトが出来上がる。そしてそれをユーザー側が魅力的なモノ、価値あるモノだと捉えることで他のメーカーが参入して常識化されていく。この段階まできたら規格化してもいいんじゃないかと。このサイクルを、データに基づいてやれるといいなと思っているんです。

最近は、転落事故について研究しています。最近は子どもの登る姿勢のデータベースが作れるようになってきているんです。どういうことかと言うと、子どもがどこを、どんなふうに登る可能性があるかということが分かることで、転落事故防止につながります。身体機能や認知機能の変化が大きい1~2歳の子どものデータを中心に集めていますが、今後は保育園の遊具で観察するとか、現場からの情報を集められるような仕組みが出来るといいなと思っています。

子どもから目を離してもいい環境の整備

杉原:なるほど。子どもの1~2年って変化がとても大きい。このアルゴリズムがディープラーニングしていくことも大事で、そこから得られるデータから環境やデザインを変えていくことによって、大きな事故を防ぐことが出来るようになるということですよね。

西田:その通りです。我々が研究を続けてきたなかで気が付いたことは、社会が必ずしも問題を理解しているというわけではないということ。リサーチして問題を抽出しなくてはいけない場合もある。我々が子どもの事故について取り上げたのが2007年で、それまではそういった活動はなかったんです。そこで、子どもにとって安全なもの、いいものをアイコン化して推奨することで市場を拡大していけたらと、2007年に「キッズデザイン賞」を作りました。ニーズがイノベーションに返還されるという仕組みが出来上がりつつあるのかなと思っています。やはりいいものを褒めていかないと社会はシフトしない。

杉原:素晴らしいですね。確かにハードパワーとしての規格も必要ですが、エンジニアリングでもデザインを変えられるものがきちんと評価されなければユーザーも育たない。アイデア自体はかなり前からあったのに、実装としてのフィールドになかなか到達しなかったということですよね。おそらく倫理的な問題もあるかと思います。今は、一般社会におけるデータの扱い方についての理解が深まってきている。

西田:そうですよね。現場で役に立つ知識の作り方が、IoTの時代で変わってきたのかなと感じています。家庭においても、新しいスマート環境を作っていくということが出来る時代になってきたのではないかなと。社会側の受け入れ方が変わってきたと思うんです。最近はZoomやSkypeで家の中まで入っていける時代になってきたので、画像認識を使えば、その家、その人に合わせた安全対策の提案が出来るようになりますよね。

杉原:確かに。事故の可能性が可視化されることで、よりイメージしやすいし、事故防止につながると思います。事故に様々な外的要因があったとしても、誰にでも必ず起こる可能性がある。高齢化の問題で考えると自分事化しやすいですよね。いまや3人にひとりが高齢者と言われる時代になっていて、家族にひとりは高齢者がいるという社会ですから。

西田:そうなんです。日本の人口分布と事故の確率をグラフで見てみると、人口分布は平たんな一方、事故の確率は生まれた瞬間と65歳以上に多い、いわゆる「バスタブ曲線」です。人生には妊娠・出産や介護したりされたりと、どこかで必ず変化がある。この変化に対応していかないといけないのが現代。変化するところに色々なニーズが隠れている。つまり、 “常識を疑え”ということなんです。これまでの常識だった「事故を防ぐために目を離すな」から、我々が目指しているところは「目を離してもいい環境」を作ること。それを認めていく環境を作ること。怪我を許容する自立支援や、リスク管理型の社会参加を促す方向にもっていきたい。

杉原:謎解きのようなグラフですね。こんなにも課題の抽出されている社会に生きているってラッキーですよね。これからいろんなことにチャレンジできる。

西田:そうですね。このメッセージが若い世代の人たちにどんどん伝わっていくといいですよね。我々には解かなくてはいけない問題がたくさんある。まだまだ未熟な社会です。人生100年時代と言われているいま、子どもからお年寄りまで、“機能が変わる人”にフォーカスして、その変化にどう対応していくかが問われる社会になってきているわけです。

西田佳史(にしだ・よしふみ)
東京工業大学 工学院 機械系教授。1998年東京大学大学院工学系研究科機械工学専攻博士課程修了。博士(工学)。同年4月通産省(現経産省)工業技術院電子技術総合研究所入所。2003年産業技術総合研究所デジタルヒューマン研究センター研究員。同年、同研究センター人間行動理解チーム長。2005年〜2012年科学技術振興機構戦略的創造研究推進事業(CREST)研究代表者。2009年産業技術総合研究所デジタルヒューマン工学研究センター生活・社会機能デザイン研究チーム長。2013年同研究所デジタルヒューマン工学研究センター首席研究員。2014年から2019年東京理科大学連携大学院客員教授。2015年産業技術総合研究所人工知能研究センター首席研究員。2017年より、セコム科学技術振興財団の特定領域研究助成(社会技術分野)の領域代表者。 2019年より産業技術総合研究所人工知能研究センター招聘研究員。2019年から東京工業大学工学院機械系教授に就任。

(text: 宇都宮弘子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー