対談 CONVERSATION

あなたの疾病リスクが予知可能に 東芝が仕掛ける近未来の医療

宮本さおり

スマートウォッチの出現が私たちの健康管理のあり方を大きく変えた近年。データを取得することで健康増進につなげる動きはどのように加速しているのか。この夏、「疾病リスク予測AI」のサービスを開始した株式会社東芝、東芝デジタルソリューションズ株式会社を編集長・杉原行里が訪ねた。

人々の健康に対する意識の高まりが見られる昨今、その後押しをしたものとして、スマートウォッチの存在は大きいだろう。日本国内における販売台数は年々増加、ICT市場調査コンサルティングのMM総研による調査では、2019年度には過去最高の191.4万台を記録、2020年度の予想数値は263.5万台と、さらに数字が伸びそうだという。利用者がよく使う機能でみると、最も多いのがウォーキング・ランニングの記録(消費カロリー、歩数、移動距離、ランニング機能)63.7%、次いで「心拍計」などが続き、「睡眠時の記録」についても47.4%がよく使う機能としてあげている。

自分の体の状態を客観的な数字を持って教えてくれるアイテムへの関心は、今後も高まりを見せるだろう。そんな中、東芝グループはAIを使い将来の疾病リスクを予測する「疾病リスク予測AI」の運用をはじめた。なぜこうした取り組みをはじめたのか。開発、運用に携わるチームの皆さんを編集長・杉原が訪ねた。

左から 東芝デジタルソリューションズ株式会社 ICTソリューション事業部保険ソリューション営業部営業第一担当主任太田和行氏、同事業部保険ソリューション部技術第二担当参事 栗田英和氏、株式会社東芝 技術企画部ライフサイエンス推進室主務 山口泰平氏

機械の故障を
見分ける技術を応用

杉原:今日はお時間をいただきありがとうございます。まず、現在の取り組みについて伺いたいのですが、病気の超早期発見や個別化治療という部分について、近未来の医療がどうなるのかをお伺いしたいのですが、こちらのチームではAIを使って疾病リスクを予測するものをされているとうかがいました。

山口:東芝グループは新規事業領域として精密医療に取組んでおり、病気の超早期発見や個別化治療に関わる研究開発、社会実装を進めています。その中の1つである「疾病リスク予測AI」は、健康診断のデータから将来の疾病リスクを予測する技術です。

杉原:「こうした病気にかかる可能性がありますよ」という予測を出すということですよね。

栗田:はい。糖尿病・高血圧症・脂質異常症・肝機能障害・腎機能障害・肥満症の6つの生活習慣病に関するリスクを、1回分の健康診断データを基に、6年先まで予測します。

杉原:具体的にはどのようにして予測が導き出されるのでしょうか?

山口:企業では、社員の健康診断を毎年行っていますよね。東芝にも健康診断データや、投薬データが長期間にわたって同じフォーマットで蓄積されています。これらのデータを使って何かできないかというところが一つありました。

加えて、我々には製造現場で培ってきたAI技術があります。例えば、半導体の製造現場で欠陥品を検出する際や、製造機械設備が故障する際の予兆を見つけるときなどに、AI技術を活用してきました。こういった技術は欠陥検出や機械故障を予測するためのものですが、対象を人間に置き換えると、体の不調、病気の発症を予測できるのではないかという発想から開発がはじまりました。

一気通貫したソリューションについて話す山口氏

こういったデータと技術を組み合わせることで、将来病気になるリスクを予測しています。この技術は超早期発見というよりも、どちらかいえば健常な人たちが将来病気になるのを予測するというものです。超早期発見というキーワードでいうと、マイクロRNAという技術があり、研究開発を進めています。わずかな量の血液から13種のガンを網羅的に検出する技術です。

杉原:それにはデータが必要ですよね。

山口:わたしたちとしては予防から治療まで、一気通貫したソリューションとして提供したいと考えていますので、その元になるのがやはりデータだと思っています。

健康を支える
ソリューションとは

杉原:「疾病リスク予測AI」は、ソリューションの一部ということですね。

太田:はい。健康診断データの数値を見るだけではピンとこなかった病気のリスクを可視化することで、生活習慣病の予防・改善につなげるソリューションです。

疾病リスク予測AIにより、生活習慣病の予防・改善に貢献したいと話す太田氏。

山口:もう一つデータという観点で言うと、我々は遺伝子解析事業も行っています。遺伝子データというのは私たちの体の設計図です。設計図に記載されている体質情報と健康診断の経年データや、服薬の情報を組み合わせることで、例えば、同じ薬を飲んでいる人たちの中で、効果に差が出る原因を調べることもできるようになるかもしれません。

さらに、年1回の健康診断だけではなく、食事や活動量などの生活データを組み合わせていくことで、個人を起点に医療・ヘルスケアデータを一本につなげていきたいと思います。

ウェアラブルだけ、ゲノムだけ、検診だけというところは多いのですが、弊社はぶつ切れではなく、つなぎ合わせることができる、弊社の考える精密医療の形はそういうところだと思っています。

東芝が考える生活習慣改善ソリューションの提案画面例。組み合わせたデータを元に、近い将来の疾病リスク予測を可視化、どこを気にかけると良いかを分かりやすく教えてくれる。

杉原:確かに、ただデータが取れるだけで終わってはもったいないですよね。一気通貫というのは面白いですし、経年でのデータ蓄積があるというのはすごく羨ましいところですね。これを使って今後はどのような取り組みをしていきたいと考えておられるのでしょうか?

山口:個人のこれらのデータを収集、分析し、その結果に基づいて層別化を行い、各層グループ毎に最適な予防法、治療法を提案していきたいと考えています。

杉原:実際今、どのような形で、どれくらいの量のデータを集められているのですか?

山口:今は東芝の従業員を対象に、精密医療のビジョンに賛同いただける方々から、ゲノムデータ、健診データ、レセプトデータの提供をお願いしています。当然、ご本人の同意をいただきながら進めており、その数は1万人を超えています。

杉原:その数字は予想よりも多かったのでしょうか、少なかったのでしょうか?

山口:まずは1万人を目標に進めてきましたが、思ったよりも早く1万人の同意が得られた印象です。

私たちの精密医療ビジョンの1つに「次の世代も見据えた予防医療に、デジタルの力を活かします」というものがあります。
現時点では、従業員に対して、遺伝子検査の結果から病気のリスクをお知らせすることを全く行っていないんです。あくまでも、医療のため、一個人だけでなく同じ境遇に悩んでいる人のためや、次の世代の予防医療のために残す健康資産という考えにご賛同頂いた方々に参加頂いています。

杉原:先ほど、次世代の医療に関するお話も出ていましたが、今回得たデータの活用方法について、御社として何か具体的なお考えはあるのでしょうか?

山口:ゲノムデータ、健康診断データ、レセプトデータ、更にウェアラブルデータ等を活用した日常データを繋ぎ合わせることで、医療発展のための研究だけなく、ヘルスケア産業自体の発展に貢献できる仕組みを作っていきたいと思っています。

センシング活用に
欠かせない倫理観

杉原:HERO Xはすごいコアなファンが多いのですが、私が思うに、その方たちって1つだけ共通項があるんです。いろいろなことを自分ごと化して見れているんですよね。例えば、ガンの超早期発見の話を聞いた時にスッと入ってくるという方は、おそらく近しい人がガンを経験したり、ガンで亡くなったりしていることが多いと思うのです。1万人の同意を得られたというのは、こうした自分ごと化されている方なのではないかと想像します。何か未来のためにっていう医療への期待が込もっているのを感じます。

未来のためにというのは僕らもよくテーマとして言っているところなのですが、正直結構勘違いされやすい。僕らの場合、パラリンピアンとか、いろんな疾患を持ってる方たちを助けようみたいな媒体に思われがちですけれど、狭くそこだけに焦点を絞っているわけではなく、どちらかと言えばそこで、その技術がどうなって進化していくのか、そのアイデアがどう大きくなっていくのかというところに注力を注いでいるので、今日のお話はすごく共感するのです。ただ、データを取られることが、まるで丸裸にされるように感じる方もいます。これよりも先、より多くの人たちに賛同を得ていくための壁はあるのではないでしょうか。

山口:そこはおっしゃる通りだと思っています。個人それぞれに考え方は当然違いますのでより多くの方に賛同頂くには、自分ごと化できるような小さな成功体験を少しずつ示していくしかないと思っています。

我々のビジョンにご賛同頂きゲノムデータまでをも提供してくれる方々に対して、中途半端なデータは返せないと思っています。しっかりとした研究に基づいたエビデンスにより、〝これなら返せる〟というものを作っていく必要があります。かつ、例えば「ある疾患のリスクがあります」で終わらせるのではなく、その先に「遺伝的背景から、あなたにはこういった予防がお勧めです」ということまでお伝えする、ここまでがセットになって初めてお戻しすることができると思っています。

杉原:ローマは1日にして成らないのだから、その30年、50年、100年というロングスパンで考えたときに、もしかしたら自分のひ孫あたりにそれらがフィードバックされるという想像力を持ち合わせているかいないかですよね。今日はありがとうございました。

(text: 宮本さおり)

(photo: 小林鉄兵)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

センシング技術と即自的インターフェースが導く未来「ORPHE TRACK」開発者・菊川裕也が見る夢 後編

吉田直子

履くだけで自分のフォームや歩き方が分析できるウェアラブルシューズ「ORPHE TRACK」。前編では、楽器のもつ「即自的フィードバック」をスマートウェア開発につなげるという、菊川氏のユニークな発想を伺った。後編では、「ORPHE TRACK」で蓄積されたノウハウやデータを、今後どう生かしていきたいかを聞く。リハビリや医療の分野にもかかわりが深い編集長・杉原が、技術革新が可能にする医療・福祉の未来を、菊川氏と共に語る。

「走る」「歩く」のセンシングが
医療につながる

杉原:今現在は、首都大学東京に入った時からの考え方やビジョンを受け継ぎつつ、企業ブランディングもきちんとやりつつ、次のステージに行っている感じですか?

菊川:まさにそうじゃないでしょうか。最初の2、3年は、まず「ORPHE ONE」というものを作りながら、会社のあり方を試行錯誤していて、コラボもたくさんやっていました。あとは同じセンサーをハイヒールにとりつけて、歩行の指導をやってもらったりしています。これは、(RDSの)陸上トラック競技用の車イスの取り組みに近いですね。

杉原:そうですね。僕ら、いま手を組んでいるのがリハビリのチームなんです。「歩く」という行為は、例えばそれを見ることで特定の病状などもわかりやすくなるので、医療にもつながりますよね。でも、それには、その人の歩き方を常に理解するセンシングも必要です。それは靴だよね、みたいな話はexiii design 代表で、RDSのプロダクトデザイナーの小西哲哉(http://hero-x.jp/article/8714/)ともしていました。

菊川:そういうことに取り組まれていたらわかると思うのですが、例えば認知症のかたが、歩幅が狭くなったり、歩行速度が遅くなったり、足が上がりにくくなったりすることが、骨格的な問題で起こっているのか、認知的な問題で起こっているのかを切り離すのは結構複雑ですよね。転倒した時のデータがあっても、「この人は歩行速度がいくつだから、認知症です」みたいなジャッジはおそらく難しくて、その人の日常生活のデータなど、色々なデータを組み合わせた中で、予測ができるようになるのかなと思うんです。

杉原:まさにその通りだと思います。ブロックチェーンではないけれど、様々なIoTが入ってデータバンキングしながら、病気などを予測する動きは、たぶん次のビジネスとして来るのではないかと思いますね。

専用センサーをソールに入れるだけで、ランのデータをスマートフォンに飛ばせる。着地の瞬間はサイドのLEDが光って通知してくれる

転倒のタイミングを
靴で知らせることはできる?

杉原:医療という面では、転倒を防止すれば、日本の医療費の多くは削減できるといわれているそうです。

菊川:医療費は40兆円とかですよね。

杉原:要は、高齢者が自分の歩き方が変わっていることに気づかない。それで、転倒して骨折すると動かなくなるので、認知症が始まっていく。だけど、靴の中にセンシングがあって、家族に「そろそろ歩行をトレーニングする必要がありますよ」とウォーニングするようなものができると、かなり日本の、というか、世界の医療費も下がるだろうというのを、僕は「ORPHE TRACK」を見ながら考えているんです。

菊川:うちの場合はセンシングできるというのと、その時、常に身に着けているというのがセットになっているのが強みですね。高齢者でも靴は履くはずなので。振動モーターとかも入っているので、危ないという時に予知できるなら、ちょっと前に教えてあげるとか。例えば高齢者は爪先があがらなくなったら転倒しやすくなっているというのはすでに知られていますが、そこで「転倒しやすいから外には出ないで」と言ったら、結局寝たきりになるので、逆効果ですよね。だから、たぶん、本当に直前に教えてあげることができなかったら、あまり変えられないと思っています。

杉原:倫理的な問題を一回置いておいて、「ちょっと足が上がってないぞ」「少しは上げる準備をしておいてください」というアドバイス、コーチングがあると面白いですよね。

菊川:もちろん、あるといいと思いますね。ただ、僕が勝手に思っていることは、ランナーでも歩く人でも、「こうしてください」と言われても、なかなか出来ない。そこを、音や振動や光で、自然とそうなるようにしてあげたい。だから、もしこけやすい歩き方をしている人だったら、アプリケーションを通じて楽しんでいるうちに、こけづらくなるというのをやりたいんです。変化を人間側に求めない。テクノロジー側が人間を変えていくようにすればいいと思っています。

杉原:それ、すごくよくわかります。僕らは、もともと車イスをやっている業界ではないので、モビリティをやっている時に「この時代なのに、どうして人間がモノに合わせるのか?」と思う時があるんです。

菊川:それは、たぶん日本人が苦手なところだと思います。ガマンをして、モノに合わせてしまう。うちのアンバサダーをしてくれているランナーが、アプリを使って着地とかを見ながら2カ月くらい走ったら、相当なミットフットの技術を習得したんですね。そもそもフォームを変えられたこと自体がすごいですし、変わったということを簡単に証明できるのが面白い。今まではなかなか伝えられなかったことが伝えられるから、自分にとっても他人にとってもわかりやすくなる。

杉原:こんなに簡単にレジリエンスが出ちゃうのが、すごいですよね。

菊川:そうです。100万人の高齢者が履いていてくれて、転倒のことを研究すれば、「こけにくさ」というのも、社会的にすぐ実験できたり、証明できたりするのではないかと思っています。

予防医療の経済効果を
可視化していくことの意義

杉原:今はアシックスと組んでいるんですか?

菊川:ええ。現在お見せしている「ORPHE TRACK」」は自社オリジナルで作ったランニングシューズですが、これとは別にアシックスのシュ-ズの中にうちのセンサーが入るものを開発中です。

杉原:今後、企業として、「歩く」「履く」「動く」以外にセンシングの技術でやりたいことはありますか?

菊川:構靴にはこだわっていますね。僕がやりたいのは、本当にただ「靴を履く」という行為自体に意味付けをすることです。「歩く」「走る」という根源的なところが楽しくなることで人を変えたいので、ウェアラブルでプラスワンをしたくないんです。それが出来るのってたぶん、靴を含めて、本当に限られたアイテムしかないです。もともとは靴自体が、裸足だと歩けなかった領域を歩けるようにしたり、疲れにくくしたりするためのものです。最近も靴によってタイムが短縮されたりしていて、 そもそも“最小の乗り物で人間を拡張する“ということが、靴に含まれている。その面白さに、全然飽きないんです。

杉原:未来の靴はどうなっていくと思いますか?

菊川:ひとつ思っているのは、さっきも言ったように、今は靴に対して人間が合わせている状態に近いですよね。それが、靴と歩き方の因果関係が全部データで結べるようになったら、靴やインソー     ルを正しく選んでいる限りは、歩きに関する悩みはなくなっていく。そういう方向性にはいくだろうなとは思っています。

杉原:今まではそこを検証しようがなかったから、大量生産されていた。それが今、パーソナライズできるようになっている。僕の中の見解としては、ユニバーサルデザインの定義が変わっていき、個人所有を目的とした物作りやプロダクトが主流になると感じています。「HERO X」などを通じて色々な人とお会いしていると、みなさん、ほぼ同じことを言うんです。みんなそこに行きつくとしたら、その未来ってめちゃくちゃ楽しそうだなと。僕も自分に合った靴が欲しいですね。ただ、「自分に合った」というのが一体なんなのかというのが、次の議論になっていくと思います。

菊川:そこの証明をするためのデータだと思います。ただ、数種類のシューズの中に、僕らのセンサーを入れ替えられるようにした時、同じ人でも靴によってタイムが変わってくれば、やりたい走りに合わせて靴を選べます。しかも、そのデータは靴メーカーに返ってくるので、メーカー側も確実に効果を与える製品を作っていくようになる。本当に近い未来に、そういうループが回っていくのではないかという感覚はありますね。

杉原:今まで、有名なランナーが履いていることを広告して購買意欲を促していたものが、インソールを含めて、これが正しいんだよとコーチングしてあげられる。そのワンパッケージは、確かに新しいけれど、本来あるべきだったものがやっと追いついてきた感覚に近いですね。

菊川:そうですね。あとは、杉原さんも同じだと思うのですが、やりたいなと思っているのは、予防医療の経済効果を今の時点で評価できるようにすることです。というのは、医療費はみんなで負担しているけれど、予防医療のために買うものは100%自己負担ですよね。その状態のままだと、予防医療の段階で防ぐことが難しいのではないかと思うんです。だから、データをみんなが活用できる形にしておけば、それこそ「転倒をしやすくなっていますよ」というのを止めにかかる何かができるんじゃないかと。

杉原:予防医療を推進するには、データをバンキングしていって、自分にメリットがあると明確に見せていくことが大事ですよね。今回、菊川さんのプラットフォームを見ていて、めちゃくちゃ面白いと思ったのは、そこもあります。僕らもオリパラを契機に、次の世代にどう新しい絵をもっていけるかは、すごく考えていますね。

前編はこちら

菊川裕也(きくかわ・ゆうや)
1985年、鳥取県出身。一橋大学 商学部 経営学科を卒業後、首都大学東京大学院芸術工学研究科に進学。音楽演奏用のインターフェース研究・開発を行う。視覚的インターフェース「PocoPoco」が、アジアデジタルアート大賞優秀賞を受賞。その後、スマートシューズ「ORPHE ONE」を開発し、2014年10月にno new folk studioを設立。クラウドファンディングでの資金調達に成功し、「ORPHE ONE」を量産化する。2019年7月にランナー向けシューズ「ORPHE TRACK」を発売。

(text: 吉田直子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー