対談 CONVERSATION

勝負はたったの0.5秒 どう防ぐ?子どもにふりかかる危険な事故

宇都宮弘子

日本における子どもの死亡原因の統計、あまり知られていないのだが、いつも上位にくるのが事故による死亡だ。高所からの転落など、子どもの思わぬ行動が死亡につながるケースは少なくない。子どもにとっての本当の安全とは何か、センシングを使い導き出そうとする動きが出てきている。これまでの常識を疑い、センシング技術で子どもの安全性向上に取り組む東京工業大学の西田佳史教授は、「親が『目を離してはいけない』から『目を離してもいい』環境へとパラダイムシフトする」と話す。いったいどういうことなのか。自分事化をきっかけに描く一歩先の未来とは? 編集長・杉原行里が訪ねた。

子どもが生まれたことを
きっかけに研究をスタート
保護者の見守りの限界

杉原:今日はよろしくお願いします。早速ですが、西田教授がセンシング技術を使って子どもの安全性向上の分野を研究しようと思われたきっかけは?

西田:単純ですよ、子どもが生まれたからです(笑)。当時、福祉工学という分野はありましたが、主に高齢者が対象で、子どもの安全に寄与するものはなかったんです。例えばISO(国際標準化機構)やJIS(日本産業規格)の定義は「受け入れることのできない危険がないこと」ですが、やっぱり危険はある。危険がないことと定義するのではなくて、危険を扱える能力を備えた状態の社会に変えていきたいと思ったんです。

特に子どもの事故は、身体の機能変化と非常に関わりが深いと思っています。身体はもちろん、認知機能や運動能力が急速に発達する時期なので、昨日できなかったことが今日できるようになる。でも事故が起こるとまず、子どもから目を離した保護者の見守り責任が問われる。しかしその事故原因の多くは、そもそも我々が設計した環境やデザインが生み出してしまっているのです。そこで、デザインによって変えられる可能性があるんじゃないかなと考えたんです。

怪我をしにくい環境はできると語る西田教授

杉原:最近、電気ケトルで火傷をした子どもの話を聞いたばかりです。なぜそんな危険なデザイン構造になっているのか疑問を感じていたところです。

西田:そうなんです。人間の注意力に頼る「見守り」だけで事故を防ぐことはできない。それを証明するためには、実際の生活の場で起こり得る現象を切り離さず、計測をして理解するということが必要でした。そこで、子どもの実際の行動を画像処理して、子どもの転倒時間や、電気ケトルが倒れて熱湯がもれ広がるのにかかる時間、物が落ちたり倒れたりする時間を測定しました。子どもが転倒するのにかかる時間は平均0.5秒。これは、例え1メートルという至近距離で見守っていたとしても、人間の見守り能力に頼るだけで防ぐにはどうしても難しい。

また例えば、子どもが歯磨きをしながら動き回って転んで怪我をしてしまうという事故も多発しています。いくら「止まって磨きなさい!」と親が言っても、言うことを聞いてくれる子どもばかりではない。見守りだけでは不十分だから、事故が後を絶たないと僕は思っています。

杉原:本当にそうで、保護者の見守りだけで事故を防ぐには限界がありますよね。親がどれだけ注意していても、子どもってじっとしていられない。

西田:そうなんです。さらに我々は怪我のデータを統計的に処理するために、まずは病院の協力を得て子どもが怪我をした部位のデータを集めて可視化しました。ビッグデータを元に効果として結果を出すことができるようになったんです。例えば、歯ブラシの事故では、目を離さないで見守ることに限界があるなら、目を離してもいい環境・デザインをつくろうではないかと、私が「ABC理論」と呼んでいる、Ⓐ変えたいもの、Ⓑ変えられないもの、Ⓒ変えられるもののなかで、Ⓒの“変えられるもの”として、転倒データを元に歯ブラシのデザインを変えることができたんです。

研究室にはベビーベットやベビーサークルなど、実際に家庭で使う家具などが並んでいる。

杉原:そうだったんですか。最近は曲がる歯ブラシが販売されていますよね。規格化は考えられていないのですか?

西田:いい質問ですね。歯ブラシに限らず、最初はとにかく問題を提示することが大事だと考えているんです。そこから企業との共同研究がはじまって、プロダクトが出来上がる。そしてそれをユーザー側が魅力的なモノ、価値あるモノだと捉えることで他のメーカーが参入して常識化されていく。この段階まできたら規格化してもいいんじゃないかと。このサイクルを、データに基づいてやれるといいなと思っているんです。

最近は、転落事故について研究しています。最近は子どもの登る姿勢のデータベースが作れるようになってきているんです。どういうことかと言うと、子どもがどこを、どんなふうに登る可能性があるかということが分かることで、転落事故防止につながります。身体機能や認知機能の変化が大きい1~2歳の子どものデータを中心に集めていますが、今後は保育園の遊具で観察するとか、現場からの情報を集められるような仕組みが出来るといいなと思っています。

子どもから目を離してもいい環境の整備

杉原:なるほど。子どもの1~2年って変化がとても大きい。このアルゴリズムがディープラーニングしていくことも大事で、そこから得られるデータから環境やデザインを変えていくことによって、大きな事故を防ぐことが出来るようになるということですよね。

西田:その通りです。我々が研究を続けてきたなかで気が付いたことは、社会が必ずしも問題を理解しているというわけではないということ。リサーチして問題を抽出しなくてはいけない場合もある。我々が子どもの事故について取り上げたのが2007年で、それまではそういった活動はなかったんです。そこで、子どもにとって安全なもの、いいものをアイコン化して推奨することで市場を拡大していけたらと、2007年に「キッズデザイン賞」を作りました。ニーズがイノベーションに返還されるという仕組みが出来上がりつつあるのかなと思っています。やはりいいものを褒めていかないと社会はシフトしない。

杉原:素晴らしいですね。確かにハードパワーとしての規格も必要ですが、エンジニアリングでもデザインを変えられるものがきちんと評価されなければユーザーも育たない。アイデア自体はかなり前からあったのに、実装としてのフィールドになかなか到達しなかったということですよね。おそらく倫理的な問題もあるかと思います。今は、一般社会におけるデータの扱い方についての理解が深まってきている。

西田:そうですよね。現場で役に立つ知識の作り方が、IoTの時代で変わってきたのかなと感じています。家庭においても、新しいスマート環境を作っていくということが出来る時代になってきたのではないかなと。社会側の受け入れ方が変わってきたと思うんです。最近はZoomやSkypeで家の中まで入っていける時代になってきたので、画像認識を使えば、その家、その人に合わせた安全対策の提案が出来るようになりますよね。

杉原:確かに。事故の可能性が可視化されることで、よりイメージしやすいし、事故防止につながると思います。事故に様々な外的要因があったとしても、誰にでも必ず起こる可能性がある。高齢化の問題で考えると自分事化しやすいですよね。いまや3人にひとりが高齢者と言われる時代になっていて、家族にひとりは高齢者がいるという社会ですから。

西田:そうなんです。日本の人口分布と事故の確率をグラフで見てみると、人口分布は平たんな一方、事故の確率は生まれた瞬間と65歳以上に多い、いわゆる「バスタブ曲線」です。人生には妊娠・出産や介護したりされたりと、どこかで必ず変化がある。この変化に対応していかないといけないのが現代。変化するところに色々なニーズが隠れている。つまり、 “常識を疑え”ということなんです。これまでの常識だった「事故を防ぐために目を離すな」から、我々が目指しているところは「目を離してもいい環境」を作ること。それを認めていく環境を作ること。怪我を許容する自立支援や、リスク管理型の社会参加を促す方向にもっていきたい。

杉原:謎解きのようなグラフですね。こんなにも課題の抽出されている社会に生きているってラッキーですよね。これからいろんなことにチャレンジできる。

西田:そうですね。このメッセージが若い世代の人たちにどんどん伝わっていくといいですよね。我々には解かなくてはいけない問題がたくさんある。まだまだ未熟な社会です。人生100年時代と言われているいま、子どもからお年寄りまで、“機能が変わる人”にフォーカスして、その変化にどう対応していくかが問われる社会になってきているわけです。

西田佳史(にしだ・よしふみ)
東京工業大学 工学院 機械系教授。1998年東京大学大学院工学系研究科機械工学専攻博士課程修了。博士(工学)。同年4月通産省(現経産省)工業技術院電子技術総合研究所入所。2003年産業技術総合研究所デジタルヒューマン研究センター研究員。同年、同研究センター人間行動理解チーム長。2005年〜2012年科学技術振興機構戦略的創造研究推進事業(CREST)研究代表者。2009年産業技術総合研究所デジタルヒューマン工学研究センター生活・社会機能デザイン研究チーム長。2013年同研究所デジタルヒューマン工学研究センター首席研究員。2014年から2019年東京理科大学連携大学院客員教授。2015年産業技術総合研究所人工知能研究センター首席研究員。2017年より、セコム科学技術振興財団の特定領域研究助成(社会技術分野)の領域代表者。 2019年より産業技術総合研究所人工知能研究センター招聘研究員。2019年から東京工業大学工学院機械系教授に就任。

(text: 宇都宮弘子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

脳をヒントにしたAI開発が次のアーキテクチャを作る 自律型AIはどこまでいけるのか

吉田直子

脳科学とAIの融合分野において世界をリードする金井良太氏。金井氏が代表を務める株式会社アラヤでは、人間の脳の仕組みをAI技術に応用し、製造業を中心とした企業に最先端のAIソリューションを提供している。同社が得意とするエッジAIとは何か。そして、金井氏がプロジェクトマネージャーとして参加する内閣府のムーンショット事業の狙いとは。次世代AIの可能性について、HERO X 編集長・杉原行里が聞く!

クラウド不要のエッジAIとは

杉原:御社の強みであるエッジAIとは、なんでしょうか?

金井:エッジというのは、スマホやカメラのような端末のことです。一般的なAIは映像をクラウドにあげて、クラウド上で計算して答えを返しますが、エッジAIはスマホなどのデバイス上で計算するというものです。全部クラウド上で自動にすると、遅延も生じてしまうし、計算が重たいですよね。それを、ディープラーニングまで含めてデバイス上で実行するのがエッジAIという技術です。

杉原:クラウドにいったん上げなくていいということですね。

金井:まさにそうです。そのほうが安価だったりします。

杉原:なぜほかのシステムはクラウドに1回上げるということになっているのでしょうか? アイデアがないのか、気づいていないのか。

金井:みんなエッジでやりたいはずですが、なぜできないかというと計算が多いからです。そこで、計算を少なくするとか、計算をしやすいようにするとかの手法が、我々の技術ドメインになると思います。

杉原:変数が少なくなるという感じでしょうか?

金井:そうですね。入力のビット数を減らしたり、あとは枝刈りといって、計算する時にニューラルネット(人間の脳の働きを模倣する数理モデル)のつながりを減らしても同じような計算結果が出るようにするなどです。

杉原:そう伺うと単純な疑問が出てくるのですが、クラウドに上げて計算したものと、御社のエッジAIで計算したものとでは、この言葉が正しいかどうかわからないのですが、整合性は保てるのでしょうか?

金井:いえ、計算を簡単にしてしまうので、性能は落ちます。ただ性能を落とさずに計算を減らすというようなことを研究開発しています。自動運転などではかなり高い精度が求められますので、実際に我々が手掛けているものは工業製品の検査とかが多いですね。

今のAI開発は野球でいうと
ピッチャー量産型!?

杉原:御社のサイトに掲載されている「お掃除ロボットの例」(https://www.araya.org/about/feature/)ですが、要は機械による自動化は地図に沿って走行計画を作っていくけれど、自律AIなら「部屋をきれいにする」という目的を人間と共有する、という。この言い方が僕はすごくわかりやすかったです。

金井:今のAIの使われ方は、物事を自動化するところがメインで、その先に自律というアイデアがあります。自動というのは人がやり方を教えてその一部をAIに置き換える手法ですが、自律の場合は、目的を与えたらやり方を見つけ出すところまで、AIがやる。さっきのお掃除ロボットだったら部屋をきれいにするためには途中の問題も自分で解く必要がありますが、現状のディープラーニングは自動レベルのものが多いです。我々はそこに強化学習や深層強化学習と呼ばれる手法を取り入れていて、それを使うと自律への道が開けるのではないかと考えています。

杉原:面白いですね。御社はAIに意識を実装する研究もしているとお聞きしましたが、すごくシンプルな質問をしていいでしょうか? 意識ってなんですか?

金井:意識は感覚だと思いますね。ものを見た時は「見た」という感覚が生じるし、痛みを感じたときは「痛い」という感覚が生じる。そういう主観的な感覚のことを意識と言っています。

杉原:五感で感じられることが意識ということでしょうか?

金井:そう、感じる能力ですね。それをAIにもたせようと思ったら、結構具体的なことを考えなきゃいけない。自発性とか、想像力とか、AIが考えるというのはどういうことか、みたいなことを突き詰める必要があります。でも、そういうことを考えていくと、普通のAIとは違う作り方を思いつける。だから、新しいAIのアーキテクチャを考える時のヒントとして、意識をもたせるには?ということを研究したりはしますね。

杉原:この意識をもったAIが、どのような分野に入ってくるんでしょう?

金井:今、仮説としているのは、いわゆる汎用人工知能みたいなものが作られるということです。脳の中にはたくさんのAIが一緒にいる状態で、その合体方法を意識というプラットフォームが示している。今のAIは機能特化型といって、姿勢の推定や、表情の読み取りなど、1つのことに特化しています。だけど人間はそれをうまく組み合わせて考えることができる。だから、今いろいろな人が作っているAIを統合して、ひとつの強力なAIを作る方向になるのではないかと思います。

杉原:野球でいうと、今のAIはピッチャーばかり作っているみたいな感じですよね。でも、金井さんは「野球やろうぜ」と言っている。

金井:そんな感じですね。チームをちゃんと作ろう、という意味です。

ムーンショットで
BMIの技術開発

杉原:御社を知るきっかけになったのが、内閣府が進めているムーンショット型研究開発制度です。目標1のブロックで民間企業として参加しているのは御社だけですが、参加のきっかけはなんでしょうか?

金井:ムーンショットの目標は、「時間と空間と脳と身体の制約から解放される」という突拍子もないものです。これは自分に向いていそうだなと思って、普通に応募しました。

杉原:今回ムーンショット1で、2050年までに御社が達成したい目標はありますか?

金井:まず2030年までにBMI(ブレインマシーンインターフェース)を実用化できるレベルをめざしています。BMIには侵襲・非侵襲といろいろあります。最初、イーロン・マスクがやっているみたいに侵襲で脳に電極を埋め込むことを考えていたのですが、それ以外にも非侵襲で普通に脳波をとったり、あとは意外と外から画像だけ解析すればいけるんじゃないかと思って。脳を見なくても何をやろうとしているかが予測できればよいので、AIのノウハウを最大限応用すれば、侵襲性が低くても人が何か考えただけでモノを動かすくらいのことができるのではないかと思っています。

杉原:PoC(プルーフオブコンセプト)としてどのあたりに入りそうですか? エンタメでしょうか? それとも老人や言語が伝えにくくなった方たちに、最初に実証していくのか。

金井:侵襲と非侵襲で使える場所が違うと思います。侵襲のほうは完全に四肢麻痺やALSのかたの身体の補完という医療用の目的。非侵襲のほうは意外に自分自身のモニタリングみたいなものに使われるんじゃないでしょうか。まず自分の疲れを知るとか、鬱や過労を防止するみたいに使って、そのあとにインターフェースとして検討されていくと思います。たぶん、声を出さないでしゃべるくらいにはなると思います。

杉原:すごいですね。例えば触覚センサーみたいなものをつけて、より重さや触覚が伝わっていくと、自宅でロボットを遠隔操作することもできますよね。

金井:そうですね。入力のところを簡単にすればいいのかなと思っています。BMIですごくいいものを作ろうとすると、精密なデータが脳からとれて、ロボットのほうも自由度が高いイメージになりますが、そこまでいかなくても「前に進みたい」と思ったら、歩くところはもう全部半自動でロボティクスでやってしまえばいいのかなと。

事業者のほうが脳の研究は進んでいる

杉原:HERO Xはスタートアップのかたも読んでいるので、起業の時に大事にしていたことをお聞きしたいと思います。

金井:起業をする時は、少しでも前に進みたいと思っていましたね。進まないのが一番つまらないので。あとから考えるといろいろ失敗もありましたが。

杉原:研究領域だけではなく、実装領域も兼ね備えるための起業だったのでしょうか?

金井:そうですね。研究でできることは限られているんです。特に脳の画像を見て、個人の特徴、例えば知性とか性格とかを読み取ることはかなりできていたので、そういうことを役立てたいと思っていました。脳の研究も、Googleのような企業が圧倒的になってしまって、アカデミックな研究よりも自分が事業を作ったほうが研究が進むのではないかと思ったんです。起業したい人からよく相談を受けるのですが、実際にはなかなか起業しないですね。やってみればいいんじゃないかと思うのですが。

杉原:僕もよくそういう相談を受けますが、悩んでいる方が心に悪いですよね。

金井:やったほうがいろいろ得られるとは思いますよね。

杉原:最後に、今後AIはどんな風に生活に入り込んでいくと思いますか?

金井:着実に様々なところに使われ始めるとは思います。ただスマホやネットレベルの、誰も気づかないけれど、実は広範囲に使われていたみたいな存在になっていくのではないかと。

杉原:人々がそれを実感して気づくタイミングって15年、20年くらい先ですか? それとも、何気なく生活がアップデートされていって、そもそも気づかない?

金井:後者だと思いますね。パソコンが速くなっても気づかないみたいなことだと思います。

杉原:気づいたら20年前よりかなりよくなっているよね、みたいな感じですね。金井さんのAIに対するアプローチってすごく新鮮というか、ほかのかたからあまり聞いたことないなと思います。会社の事業としてはBtoBが多いのでしょうか?

金井:ほぼBtoBのAI開発と、R&Dのお手伝いですね。自動車の会社が多いです。

杉原:ぜひレース業界もよろしくお願いします。マシンも、いまや走るセンサーといわれていますから。今日はどうもありがとうございました。

金井良太(かない・りょうた)
株式会社アラヤ創業者。2000年京都大学理学部卒業後、2005年 オランダ・ユトレヒト大学で人間の視覚情報処理メカニズムの研究でPhD取得(Cum Laude)。米国カルフォルニア工科大学、英国ユニバーシティ・カレッジ・ロンドンにて研究員。JSTさきがけ研究員、英国サセックス大学准教授(認知神経科学)を経て、2013年に株式会社アラヤを創業。神経科学と情報理論の融合により、脳に意識が生まれる原理やAIに意識を実装する研究に従事すると同時に、産業界におけるAIと脳科学の実用化に取り組む。文部科学大臣表彰若手科学者賞、株式会社アラヤとしてJEITA ベンチャー賞(2020)、ET/IoT Technology Award(2019)など多数受賞。2020年より、内閣府ムーンショット事業プロジェクトマネージャーとしてブレイン・マシン・インターフェースの実用化に取り組む。

関連記事を読む

(text: 吉田直子)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー