対談 CONVERSATION

勝負はたったの0.5秒 どう防ぐ?子どもにふりかかる危険な事故

宇都宮弘子

日本における子どもの死亡原因の統計、あまり知られていないのだが、いつも上位にくるのが事故による死亡だ。高所からの転落など、子どもの思わぬ行動が死亡につながるケースは少なくない。子どもにとっての本当の安全とは何か、センシングを使い導き出そうとする動きが出てきている。これまでの常識を疑い、センシング技術で子どもの安全性向上に取り組む東京工業大学の西田佳史教授は、「親が『目を離してはいけない』から『目を離してもいい』環境へとパラダイムシフトする」と話す。いったいどういうことなのか。自分事化をきっかけに描く一歩先の未来とは? 編集長・杉原行里が訪ねた。

子どもが生まれたことを
きっかけに研究をスタート
保護者の見守りの限界

杉原:今日はよろしくお願いします。早速ですが、西田教授がセンシング技術を使って子どもの安全性向上の分野を研究しようと思われたきっかけは?

西田:単純ですよ、子どもが生まれたからです(笑)。当時、福祉工学という分野はありましたが、主に高齢者が対象で、子どもの安全に寄与するものはなかったんです。例えばISO(国際標準化機構)やJIS(日本産業規格)の定義は「受け入れることのできない危険がないこと」ですが、やっぱり危険はある。危険がないことと定義するのではなくて、危険を扱える能力を備えた状態の社会に変えていきたいと思ったんです。

特に子どもの事故は、身体の機能変化と非常に関わりが深いと思っています。身体はもちろん、認知機能や運動能力が急速に発達する時期なので、昨日できなかったことが今日できるようになる。でも事故が起こるとまず、子どもから目を離した保護者の見守り責任が問われる。しかしその事故原因の多くは、そもそも我々が設計した環境やデザインが生み出してしまっているのです。そこで、デザインによって変えられる可能性があるんじゃないかなと考えたんです。

怪我をしにくい環境はできると語る西田教授

杉原:最近、電気ケトルで火傷をした子どもの話を聞いたばかりです。なぜそんな危険なデザイン構造になっているのか疑問を感じていたところです。

西田:そうなんです。人間の注意力に頼る「見守り」だけで事故を防ぐことはできない。それを証明するためには、実際の生活の場で起こり得る現象を切り離さず、計測をして理解するということが必要でした。そこで、子どもの実際の行動を画像処理して、子どもの転倒時間や、電気ケトルが倒れて熱湯がもれ広がるのにかかる時間、物が落ちたり倒れたりする時間を測定しました。子どもが転倒するのにかかる時間は平均0.5秒。これは、例え1メートルという至近距離で見守っていたとしても、人間の見守り能力に頼るだけで防ぐにはどうしても難しい。

また例えば、子どもが歯磨きをしながら動き回って転んで怪我をしてしまうという事故も多発しています。いくら「止まって磨きなさい!」と親が言っても、言うことを聞いてくれる子どもばかりではない。見守りだけでは不十分だから、事故が後を絶たないと僕は思っています。

杉原:本当にそうで、保護者の見守りだけで事故を防ぐには限界がありますよね。親がどれだけ注意していても、子どもってじっとしていられない。

西田:そうなんです。さらに我々は怪我のデータを統計的に処理するために、まずは病院の協力を得て子どもが怪我をした部位のデータを集めて可視化しました。ビッグデータを元に効果として結果を出すことができるようになったんです。例えば、歯ブラシの事故では、目を離さないで見守ることに限界があるなら、目を離してもいい環境・デザインをつくろうではないかと、私が「ABC理論」と呼んでいる、Ⓐ変えたいもの、Ⓑ変えられないもの、Ⓒ変えられるもののなかで、Ⓒの“変えられるもの”として、転倒データを元に歯ブラシのデザインを変えることができたんです。

研究室にはベビーベットやベビーサークルなど、実際に家庭で使う家具などが並んでいる。

杉原:そうだったんですか。最近は曲がる歯ブラシが販売されていますよね。規格化は考えられていないのですか?

西田:いい質問ですね。歯ブラシに限らず、最初はとにかく問題を提示することが大事だと考えているんです。そこから企業との共同研究がはじまって、プロダクトが出来上がる。そしてそれをユーザー側が魅力的なモノ、価値あるモノだと捉えることで他のメーカーが参入して常識化されていく。この段階まできたら規格化してもいいんじゃないかと。このサイクルを、データに基づいてやれるといいなと思っているんです。

最近は、転落事故について研究しています。最近は子どもの登る姿勢のデータベースが作れるようになってきているんです。どういうことかと言うと、子どもがどこを、どんなふうに登る可能性があるかということが分かることで、転落事故防止につながります。身体機能や認知機能の変化が大きい1~2歳の子どものデータを中心に集めていますが、今後は保育園の遊具で観察するとか、現場からの情報を集められるような仕組みが出来るといいなと思っています。

子どもから目を離してもいい環境の整備

杉原:なるほど。子どもの1~2年って変化がとても大きい。このアルゴリズムがディープラーニングしていくことも大事で、そこから得られるデータから環境やデザインを変えていくことによって、大きな事故を防ぐことが出来るようになるということですよね。

西田:その通りです。我々が研究を続けてきたなかで気が付いたことは、社会が必ずしも問題を理解しているというわけではないということ。リサーチして問題を抽出しなくてはいけない場合もある。我々が子どもの事故について取り上げたのが2007年で、それまではそういった活動はなかったんです。そこで、子どもにとって安全なもの、いいものをアイコン化して推奨することで市場を拡大していけたらと、2007年に「キッズデザイン賞」を作りました。ニーズがイノベーションに返還されるという仕組みが出来上がりつつあるのかなと思っています。やはりいいものを褒めていかないと社会はシフトしない。

杉原:素晴らしいですね。確かにハードパワーとしての規格も必要ですが、エンジニアリングでもデザインを変えられるものがきちんと評価されなければユーザーも育たない。アイデア自体はかなり前からあったのに、実装としてのフィールドになかなか到達しなかったということですよね。おそらく倫理的な問題もあるかと思います。今は、一般社会におけるデータの扱い方についての理解が深まってきている。

西田:そうですよね。現場で役に立つ知識の作り方が、IoTの時代で変わってきたのかなと感じています。家庭においても、新しいスマート環境を作っていくということが出来る時代になってきたのではないかなと。社会側の受け入れ方が変わってきたと思うんです。最近はZoomやSkypeで家の中まで入っていける時代になってきたので、画像認識を使えば、その家、その人に合わせた安全対策の提案が出来るようになりますよね。

杉原:確かに。事故の可能性が可視化されることで、よりイメージしやすいし、事故防止につながると思います。事故に様々な外的要因があったとしても、誰にでも必ず起こる可能性がある。高齢化の問題で考えると自分事化しやすいですよね。いまや3人にひとりが高齢者と言われる時代になっていて、家族にひとりは高齢者がいるという社会ですから。

西田:そうなんです。日本の人口分布と事故の確率をグラフで見てみると、人口分布は平たんな一方、事故の確率は生まれた瞬間と65歳以上に多い、いわゆる「バスタブ曲線」です。人生には妊娠・出産や介護したりされたりと、どこかで必ず変化がある。この変化に対応していかないといけないのが現代。変化するところに色々なニーズが隠れている。つまり、 “常識を疑え”ということなんです。これまでの常識だった「事故を防ぐために目を離すな」から、我々が目指しているところは「目を離してもいい環境」を作ること。それを認めていく環境を作ること。怪我を許容する自立支援や、リスク管理型の社会参加を促す方向にもっていきたい。

杉原:謎解きのようなグラフですね。こんなにも課題の抽出されている社会に生きているってラッキーですよね。これからいろんなことにチャレンジできる。

西田:そうですね。このメッセージが若い世代の人たちにどんどん伝わっていくといいですよね。我々には解かなくてはいけない問題がたくさんある。まだまだ未熟な社会です。人生100年時代と言われているいま、子どもからお年寄りまで、“機能が変わる人”にフォーカスして、その変化にどう対応していくかが問われる社会になってきているわけです。

西田佳史(にしだ・よしふみ)
東京工業大学 工学院 機械系教授。1998年東京大学大学院工学系研究科機械工学専攻博士課程修了。博士(工学)。同年4月通産省(現経産省)工業技術院電子技術総合研究所入所。2003年産業技術総合研究所デジタルヒューマン研究センター研究員。同年、同研究センター人間行動理解チーム長。2005年〜2012年科学技術振興機構戦略的創造研究推進事業(CREST)研究代表者。2009年産業技術総合研究所デジタルヒューマン工学研究センター生活・社会機能デザイン研究チーム長。2013年同研究所デジタルヒューマン工学研究センター首席研究員。2014年から2019年東京理科大学連携大学院客員教授。2015年産業技術総合研究所人工知能研究センター首席研究員。2017年より、セコム科学技術振興財団の特定領域研究助成(社会技術分野)の領域代表者。 2019年より産業技術総合研究所人工知能研究センター招聘研究員。2019年から東京工業大学工学院機械系教授に就任。

(text: 宇都宮弘子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

“アフターコロナ”でどう変わる⁉ 情報学から考える モビリティの現在地とこれから

長谷川茂雄

コロナ禍は、果たして世界の秩序や価値観を大きく変えたのだろうか? その答えは現時点では明言できないが、間違いなく人類はこの“わざわい”の先にある世界を具体的にイメージし始めている。今回の特集のテーマであるモビリティの在り方もそのひとつだ。移動は人類にとっての根源的な行為であるし、そのためのツールであるモビリティは、常にライフスタイルと直結している。ゆえに「アフターコロナ」は、それに見合った新たなモビリティが求められるはずだ。その最適解を導き出すための冷静な視点とガイドラインを、日本におけるコンピューターサイエンス研究の第一人者、佐藤一郎氏に伺った。

いまはモビリティの
定義が変わる転換期

近年、AIや自動運転といった技術面での進歩に注目が集まり、“快適な移動”をもたらすツールであるモビリティに対しては、期待値がかなり高まっていた。

ところが、誰も予想できなかった新型コロナウイルスの感染拡大を受け、その描いた未来をデザインしなおす必要が出てきた。

まずは、これから移動そのものはどうなるのかを捉える必要があるが、そもそも移動には、人と物(物流)の2種がある。両者はどのように変化したのだろうか?

「新型コロナウイルスで、移動というものはかなり制約される状況になりましたし、人の移動に関しては、いかに移動そのものを“させない”かを考える必要も出てきました。これからは、その2つのテーマが並存して進んでいくはずです。モビリティの定義そのものがちょうど変わる、いわば変わり目にいると言えます」

オンラインによる働き方もある程度浸透してきた現在、確かに人は積極的に“移動しない”ようになった。それゆえ、モビリティを使った人の移動を佐藤氏は、「物の移動と分けて考えられなくなった」という。では、物の移動はどうなるのか?

「人の移動が減る分、逆に物の移動は増えます。いわゆるECのような形で多くの人が物を買い、宅配便は増えています。巷で話題になっているウーバーイーツのように、専門物流業者以外に物流を担う人もたくさん出てきています。ITが人々の時間を断片化してきており、普段は別の仕事をしていて、空いた時間に配達の仕事をする人はこれからも増えていくはずで、断片化された空き時間の使い方が、様々な局面で重要となります。あとは、数年おきに注目される“共同物流”もクローズアップされる可能性はあります」

「モビリティの捉え方は、コロナ禍によって大きく変わった」と語る佐藤氏。

共同物流とは、複数の企業が同一のインフラを活用して保管や配送などの作業を行うことだが、コストが削減できる反面、他者に様々な情報が漏れる危険性があったり、業者ごとの細かな要望を共有できないなど問題点も多く、これまでは、長年成功している事例が少ない。

「これからは、ITを駆使して諸問題を解決しながら、コストカットに加えて、環境負荷を軽減する手段として共同物流のメリットを活かそうという流れは出てくるかもしれません。加えて、共同物流は倉庫と小売間といった比較的中距離の物流ですが、例えば東京と大阪間というような長距離でどれだけ効率的に物流を行うか? という課題もあります。トラックだけではなく、鉄道や船など複数の移動手段を使う“モーダルシフト”も、これからより注目される傾向にあります」

東京にはシェアリングと
公共交通の融合型がマッチする

そんな現状を踏まえたうえで、より人の生活に根ざしたモビリティの在り方も考えてみたい。例えば、現在MaaS(マース:Mobility as a Service)という概念がヨーロッパを中心に浸透してきている。マイカー以外のあらゆるモビリティをITでシームレスに結びつけるサービスのことだが、こういう動きは今後加速するといわれる。

例えば、コロナ禍以後、電動自転車などの需要が高まっているという話はよく聞く。身近なところでいえば、シェアサイクルなどのサービスは、日本でもさらに広がっていく可能性はあるのだろうか?

「日本の場合は、東京を見ればわかりますが、基本的に住宅とオフィスが混在していません。海外の都市のようにシェアリング自転車や電動スクーターが浸透するのは難しくなります。シェアリング自転車を例に取ると、東京の場合、朝は多くの人がやや郊外の住宅から最寄駅まで乗っていき、帰りは最寄駅から住宅へと向かいます。そうなると自転車の需要が時間に応じて偏ります。この結果、自転車の再配置の問題が出てきます。

シェアリング自転車置き場には、自転車がなくなってもいけないし、満杯になってもいけませんから、運用事業者はトラックを使って置き場から置き場へ再配置をしなければなりません。表に現れませんが、そこに一番コストがかかるんです。世界の都市で見れば、例えばパリは、住宅とオフィスが混在していますからシェアサイクルは古くから浸透しています。海外の都市におけるビジネスモデルが東京で使えるかというと、そうではないのです」

「世界の別の都市で活用されているモビリティのサービスやシステムが、そのまま日本で適用できるわけではない」。佐藤氏いわく「東京は、公共とシェアの融合を進めるのには有利な街」。

シェアリングモビリティは確かに便利ではあるが、街のスタイルによって向き不向きがあるというのは頷ける。では、日本では、シェアリングの乗り物はまったく向かないか、というとそうではない。公共交通とシェアリングモビリティの“融合型”がマッチするという。

「例えば住宅地ではなく、オフィス街の地下鉄の出入り口の近くに、シェアリング自転車の置き場を作る。そうすると地下鉄を降りたら自転車がすぐ利用できて重宝です。住宅地よりは実現性が高い。その背景は、オフィス街は人々が行き交うので時間に応じた偏りが少ないからです。また、地下鉄駅間は距離が短いことを考慮すると、例えば駅の自転車置き場に自転車が少ない場合は、自転車が残っている隣接する駅まで地下鉄で移動して、そこで自転車を借りるという手法も、地下鉄の事業者と連携すれば可能なはずです。海外でも公共交通とシェアリング自転車の連携は進んでいるとはいえず、東京で先行してみる価値はあるでしょう」

シェアリングと公共のハイブリッドというモビリティとの付き合い方。確かに住宅地とオフィス街が別れていることが多い日本では、それがスマートにフィットしそうだ。ただ、その場合はシェアリングの事業者と公共交通の距離感を今よりも縮めていく必要がある。では、AIに関してはどうだろうか?

ハイブリッド型のシステムを構築したうえで、オフィス街で使うモビリティにAIを搭載して、利便性を上げられないものか?

「モビリティそのものにAIを搭載して、音声で指示を与えて何かをしてもらうとか、自動運転の自転車が駅まで迎えに来てくれるとか、現段階ではそういったパフォーマンスの必要性はあまりない気がします。AIに関しては、ユーザーの意図を事前に予測して、使う自転車を予約してくれるとか、裏方的にユーザーの利便性を高めてくれるような使い方のほうが現実的ではないでしょうか」

自転車や電動スクーターそのもののインテリジェンスを高めるよりも、AIは、“先回り”的なサポート役に使ったほうがより有意義なようだ。さらに自動車においては、安全性のアップデートに使われている。

自動車はモビリティという
システムの一部になる

「これからは、自動車にカメラだけではなく、レーザーを使ったセンサーなどが搭載されるはず。そうなると障害物の発見能力が格段に上がりますから、事故を未然に防ぐ能力も高まります。

さらに、現状の自動運転は、自動車にたくさんセンサーを付けてコンピュータで処理をしていますが、自動車から見える視点には限界がありますから、他の車のカメラを含むセンサー情報も共有できれば、ドライバーの視線を超える視野を得ることになりますし、走る道路そのものにセンサーをつけて情報を共有できれば、さらに安全性は高まります。もはや自動車という閉じた単位ではなくて、それこそモビリティというひとつのシステムの一部が自動車という考え方に変わっていくのだと思います」

「モビリティという大きなシステムが作られるには、難題が多々ある」。それをクリアすることで、人間の生活はさらに大きく変わるのかもしれない。

他のモビリティや道路と連携して情報を共有しながら走るモビリティ。それが未来のモビリティの一つの在り方かもしれない。ただそこにももちろん課題がある。

「街や道路にセンサーを付けるには、それなりのコストがかかります。車の運転のためだけにセンサーを使うのではなく、社会的に他の用途でも使えるようにしなければ、その問題はクリアできません。そしてもっと難しいのは、新規の街ではなく、既存の街の方です。レガシーな場所をどうやってインテリジェント化するのか、ということです。

例えば過去に博物館のスマート化に関する実証実験を、上野の国立科学博物館などでやらせていただきましたが、それは企画展ではなく、既存の展示空間のスマート化でしたが、展示の邪魔をしないことが難題でした。、ショッピングモールなどで景観を損ねずに電源などを確保し、センサーを設置して、コンピュータで制御できるシステムを組み込むことも同じような難しさがあります。複雑に入り組んだ街もそうですし、そもそもそういった場所で、自動運転が可能なのか?という課題もあります」

既存の街や建物、インフラに新しいモビリティというシステムを組み込むことが難しければ、まだ未発達の地域を実験都市的に作り上げるというのも考えられなくはない。

「確かに実験都市というのは、新たなモビリティシステムを作っていくには好都合かもしれません。ただ、そこで得た知見が、既存の街でも応用できるかというと、それは違う部分もあります。また既存の街に関しても、東京などの大都会は複雑すぎます。今後はモビリティの概念が変わったときに都市や街に求められる大きさが違ってくるはず。新しいモビリティを活かすことで、新たな発展を遂げる地域や街が地方から出てくる可能性は、大いにあるのではないでしょうか」

(さとう・いちろう)
国立情報学研究所(NII)・情報社会相関研究系教授。慶應義塾大学理工学部電気工学科卒業。慶應義塾大学大学院理工学研究科計算機科学専攻博士課程修了。博士(工学)。お茶の水女子大学理学部情報学科助教授、国立情報学研究所助教授等を経て、2006年より現職。ほかにランク・ゼロックス客員研究員(1994〜1995年)、科学技術振興事業団さきがけ21研究員(1999〜2002年)等を務める。仮面ライダーゼロワンのAI技術アドバイザー(2019年)としても知られる。

(text: 長谷川茂雄)

(photo: 壬生真理子)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー