対談 CONVERSATION

勝負はたったの0.5秒 どう防ぐ?子どもにふりかかる危険な事故

宇都宮弘子

日本における子どもの死亡原因の統計、あまり知られていないのだが、いつも上位にくるのが事故による死亡だ。高所からの転落など、子どもの思わぬ行動が死亡につながるケースは少なくない。子どもにとっての本当の安全とは何か、センシングを使い導き出そうとする動きが出てきている。これまでの常識を疑い、センシング技術で子どもの安全性向上に取り組む東京工業大学の西田佳史教授は、「親が『目を離してはいけない』から『目を離してもいい』環境へとパラダイムシフトする」と話す。いったいどういうことなのか。自分事化をきっかけに描く一歩先の未来とは? 編集長・杉原行里が訪ねた。

子どもが生まれたことを
きっかけに研究をスタート
保護者の見守りの限界

杉原:今日はよろしくお願いします。早速ですが、西田教授がセンシング技術を使って子どもの安全性向上の分野を研究しようと思われたきっかけは?

西田:単純ですよ、子どもが生まれたからです(笑)。当時、福祉工学という分野はありましたが、主に高齢者が対象で、子どもの安全に寄与するものはなかったんです。例えばISO(国際標準化機構)やJIS(日本産業規格)の定義は「受け入れることのできない危険がないこと」ですが、やっぱり危険はある。危険がないことと定義するのではなくて、危険を扱える能力を備えた状態の社会に変えていきたいと思ったんです。

特に子どもの事故は、身体の機能変化と非常に関わりが深いと思っています。身体はもちろん、認知機能や運動能力が急速に発達する時期なので、昨日できなかったことが今日できるようになる。でも事故が起こるとまず、子どもから目を離した保護者の見守り責任が問われる。しかしその事故原因の多くは、そもそも我々が設計した環境やデザインが生み出してしまっているのです。そこで、デザインによって変えられる可能性があるんじゃないかなと考えたんです。

怪我をしにくい環境はできると語る西田教授

杉原:最近、電気ケトルで火傷をした子どもの話を聞いたばかりです。なぜそんな危険なデザイン構造になっているのか疑問を感じていたところです。

西田:そうなんです。人間の注意力に頼る「見守り」だけで事故を防ぐことはできない。それを証明するためには、実際の生活の場で起こり得る現象を切り離さず、計測をして理解するということが必要でした。そこで、子どもの実際の行動を画像処理して、子どもの転倒時間や、電気ケトルが倒れて熱湯がもれ広がるのにかかる時間、物が落ちたり倒れたりする時間を測定しました。子どもが転倒するのにかかる時間は平均0.5秒。これは、例え1メートルという至近距離で見守っていたとしても、人間の見守り能力に頼るだけで防ぐにはどうしても難しい。

また例えば、子どもが歯磨きをしながら動き回って転んで怪我をしてしまうという事故も多発しています。いくら「止まって磨きなさい!」と親が言っても、言うことを聞いてくれる子どもばかりではない。見守りだけでは不十分だから、事故が後を絶たないと僕は思っています。

杉原:本当にそうで、保護者の見守りだけで事故を防ぐには限界がありますよね。親がどれだけ注意していても、子どもってじっとしていられない。

西田:そうなんです。さらに我々は怪我のデータを統計的に処理するために、まずは病院の協力を得て子どもが怪我をした部位のデータを集めて可視化しました。ビッグデータを元に効果として結果を出すことができるようになったんです。例えば、歯ブラシの事故では、目を離さないで見守ることに限界があるなら、目を離してもいい環境・デザインをつくろうではないかと、私が「ABC理論」と呼んでいる、Ⓐ変えたいもの、Ⓑ変えられないもの、Ⓒ変えられるもののなかで、Ⓒの“変えられるもの”として、転倒データを元に歯ブラシのデザインを変えることができたんです。

研究室にはベビーベットやベビーサークルなど、実際に家庭で使う家具などが並んでいる。

杉原:そうだったんですか。最近は曲がる歯ブラシが販売されていますよね。規格化は考えられていないのですか?

西田:いい質問ですね。歯ブラシに限らず、最初はとにかく問題を提示することが大事だと考えているんです。そこから企業との共同研究がはじまって、プロダクトが出来上がる。そしてそれをユーザー側が魅力的なモノ、価値あるモノだと捉えることで他のメーカーが参入して常識化されていく。この段階まできたら規格化してもいいんじゃないかと。このサイクルを、データに基づいてやれるといいなと思っているんです。

最近は、転落事故について研究しています。最近は子どもの登る姿勢のデータベースが作れるようになってきているんです。どういうことかと言うと、子どもがどこを、どんなふうに登る可能性があるかということが分かることで、転落事故防止につながります。身体機能や認知機能の変化が大きい1~2歳の子どものデータを中心に集めていますが、今後は保育園の遊具で観察するとか、現場からの情報を集められるような仕組みが出来るといいなと思っています。

子どもから目を離してもいい環境の整備

杉原:なるほど。子どもの1~2年って変化がとても大きい。このアルゴリズムがディープラーニングしていくことも大事で、そこから得られるデータから環境やデザインを変えていくことによって、大きな事故を防ぐことが出来るようになるということですよね。

西田:その通りです。我々が研究を続けてきたなかで気が付いたことは、社会が必ずしも問題を理解しているというわけではないということ。リサーチして問題を抽出しなくてはいけない場合もある。我々が子どもの事故について取り上げたのが2007年で、それまではそういった活動はなかったんです。そこで、子どもにとって安全なもの、いいものをアイコン化して推奨することで市場を拡大していけたらと、2007年に「キッズデザイン賞」を作りました。ニーズがイノベーションに返還されるという仕組みが出来上がりつつあるのかなと思っています。やはりいいものを褒めていかないと社会はシフトしない。

杉原:素晴らしいですね。確かにハードパワーとしての規格も必要ですが、エンジニアリングでもデザインを変えられるものがきちんと評価されなければユーザーも育たない。アイデア自体はかなり前からあったのに、実装としてのフィールドになかなか到達しなかったということですよね。おそらく倫理的な問題もあるかと思います。今は、一般社会におけるデータの扱い方についての理解が深まってきている。

西田:そうですよね。現場で役に立つ知識の作り方が、IoTの時代で変わってきたのかなと感じています。家庭においても、新しいスマート環境を作っていくということが出来る時代になってきたのではないかなと。社会側の受け入れ方が変わってきたと思うんです。最近はZoomやSkypeで家の中まで入っていける時代になってきたので、画像認識を使えば、その家、その人に合わせた安全対策の提案が出来るようになりますよね。

杉原:確かに。事故の可能性が可視化されることで、よりイメージしやすいし、事故防止につながると思います。事故に様々な外的要因があったとしても、誰にでも必ず起こる可能性がある。高齢化の問題で考えると自分事化しやすいですよね。いまや3人にひとりが高齢者と言われる時代になっていて、家族にひとりは高齢者がいるという社会ですから。

西田:そうなんです。日本の人口分布と事故の確率をグラフで見てみると、人口分布は平たんな一方、事故の確率は生まれた瞬間と65歳以上に多い、いわゆる「バスタブ曲線」です。人生には妊娠・出産や介護したりされたりと、どこかで必ず変化がある。この変化に対応していかないといけないのが現代。変化するところに色々なニーズが隠れている。つまり、 “常識を疑え”ということなんです。これまでの常識だった「事故を防ぐために目を離すな」から、我々が目指しているところは「目を離してもいい環境」を作ること。それを認めていく環境を作ること。怪我を許容する自立支援や、リスク管理型の社会参加を促す方向にもっていきたい。

杉原:謎解きのようなグラフですね。こんなにも課題の抽出されている社会に生きているってラッキーですよね。これからいろんなことにチャレンジできる。

西田:そうですね。このメッセージが若い世代の人たちにどんどん伝わっていくといいですよね。我々には解かなくてはいけない問題がたくさんある。まだまだ未熟な社会です。人生100年時代と言われているいま、子どもからお年寄りまで、“機能が変わる人”にフォーカスして、その変化にどう対応していくかが問われる社会になってきているわけです。

西田佳史(にしだ・よしふみ)
東京工業大学 工学院 機械系教授。1998年東京大学大学院工学系研究科機械工学専攻博士課程修了。博士(工学)。同年4月通産省(現経産省)工業技術院電子技術総合研究所入所。2003年産業技術総合研究所デジタルヒューマン研究センター研究員。同年、同研究センター人間行動理解チーム長。2005年〜2012年科学技術振興機構戦略的創造研究推進事業(CREST)研究代表者。2009年産業技術総合研究所デジタルヒューマン工学研究センター生活・社会機能デザイン研究チーム長。2013年同研究所デジタルヒューマン工学研究センター首席研究員。2014年から2019年東京理科大学連携大学院客員教授。2015年産業技術総合研究所人工知能研究センター首席研究員。2017年より、セコム科学技術振興財団の特定領域研究助成(社会技術分野)の領域代表者。 2019年より産業技術総合研究所人工知能研究センター招聘研究員。2019年から東京工業大学工学院機械系教授に就任。

(text: 宇都宮弘子)

(photo: 壬生マリコ)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

Laboro.AI 椎橋徹夫と語る AIが引き出す新しいバリュー データ統合ビジネスで見えてくる日本の未来

吉田直子

現在はAIの第三次ブームといわれている。機械のスペックが上がり、膨大なデータを処理できるようになったことで、いわゆるディープラーニングが可能になり、ビジネスの様々なシーンに活用されるようになった。しかし、AIが何を得意とし、実際にAIを使ってどんなことができるのかは一般にはあまり知られていない。AIを活用したオーダーメイド型のソリューション開発やコンサルティングを提供する株式会社 Laboro.AIのCEO・椎橋徹夫氏に、編集長・杉原行里がAIビジネスの可能性を聞く!

AIは人間の右脳的な働きを実現できる

杉原:僕はその分野にいるのでそう感じてはいないのですが、一般の方はAIを神格化している部分があると思います。そもそも“AIはなんでもできるのか?問題 ”というのがあると思うのですが、そのあたりを教えていただけますでしょうか?

椎橋:AI万能論に対してよく言うのは、まず「AIは基本的にはソフトウェアです」ということです。ただ、今までのソフトウェアやITシステムとは少し種類が違うことができるようになっています。今までのソフトウェアはロジカルな処理を正確に速くやることが得意でした。一方で直感的な処理が結構難しかったんです。

例えば、画像を見て、それが犬か、猫かを分類するみたいなことは、明文化できない直感的な処理が人間の脳の中で起こっています。そういう直感的な処理は今までのソフトウェアでは全くできませんでした。でも、AIはそれができるようになった。人間のように賢くて難しいことができるというより、人はわりと当たり前にやっているけれども、従来ならプログラムやルールに落とし込みきれなかった処理ができるようになったソフトウェアだと考えています。今までのソフトウェアが左脳的なものだったのに対して、AIは右脳的な処理ができるようになったと言ってもいいと思います。膨大なデータから自動的に特徴を見い出して、それに沿って具体的な認識や予測ができるようになりました。ですから、AIという言葉は「データに基づいた直感的な処理ができるソフトウェア」や、「認識や予測のアルゴリズム」という捉え方をするのが、現時点では実態に近い説明ではないでしょうか。

杉原:もともと、椎橋さんは東大の松尾研究室にも関わられていたということなので、その分野のエキスパートだと思うのですが、僕は、AIが介在することによって、今までバリューとしてとらえていなかった一連の行動や、価値を見出せていなかったデータを、価値あるものに置換できる未来を期待しているのですが。

椎橋:はい。まさにそうですね。

杉原:ヘルスケアの部門はそれが顕著だと思います。御社や椎橋さんの中で、今後こういう未来が来そうだという予測はありますか?

椎橋:はい。実はヘルスケア、メディカルの領域はひとつの重点領域として考えています。まさに、AIのイノベーションというのは、今までは価値に変換できなかった細かいデータを、AIというアルゴリズムを通して効率よく価値(バリュー)に変換できることです。でも、その中でまずみなさんがやるのは、とりあえず持っているデータの価値を引き出すためのAIを開発することなんです。

一方で20〜30年後を考えると、そういうタイプの取り組みの価値は、むしろ小さくなると考えています。より大きいのはA社、B社、C社、それぞれが持っている断片的なデータをきちんと組み合わせてAIのアルゴリズムを通すと、全員にとってかなり大きな価値を生み出すという流れです。今、我々は様々な領域でクライアントと1対1でAIのスキームを作っていますが、この先は複数のデータをつなげてAIに入れて価値を引き出すということも視野に入れていく必要性があるなと感じています。

杉原:具体的な例はありますか?

椎橋:はい、そうですね、例えば、今、健康診断のデータは保険組合が、病院の診断データは病院が、細かい精密検査のデータは検査会社がそれぞれ持っているような状態です。一方でそれらのデータを使って価値あることをやりたいのは、製薬会社や医療保険系の保険会社です。データを様々な人が断片的に持っていて、かつそのデータの価値を一番引き出せる人が、データを持ってないということが、すごくわかりやすく起こっているのが医療の領域です。この医療ビッグデータの活用が、ひとつの議論です。患者さんのデータを共有しあう構造の中で、アルゴリズムで処理されて適切に医療データが提供される形になると、リスクがあれば早めに手を打てて、健康なまま長く生きることが可能です。

近未来に予想されるAIの具体的な活用について話し合う編集長杉原(左)と椎橋代表(右)

杉原:僕もまったく同じことをずっと言っています。僕らはたぶん将来、病院というものが形を変えていくだろうと考えています。日々生活していく中で当たり前のようにデータがとられ、レコメンデーションがどんどんされていって、健康寿命が延びていくと。製薬・投薬もそうですが、まだパーソナライズされたものがないですよね。そこまでには越えなきゃいけない壁がたくさんあるとは思いますが。

椎橋:医療費も削減されるので、国レベルで考えるとデータの統合は絶対やったほうがいいのですが、難しいのは、一歩踏み出す、その一歩の踏み出しによってネガティブな印象を受ける可能性があることです。短期的にいかにインセンティブがある形で各プレイヤーがそこに踏み出していけるかというのを設計することが重要だと思います。

杉原:そうですね。僕らもよく言っているのは、結局ここで一番大事なのはコミュニケーションだということです。どういう未来がインセンティブをくれるのかというのを提示しない限りは、たぶんみんなはデータ共有に賛成してくれないですよね。

「冷蔵庫の中の最適解」を
AIが導き出す!?

杉原:今後、医療の業界以外には、どういう分野でより顕著にAIが活用されていくでしょうか。

椎橋:そうですね。キーワードになるのが、フィジカル×コンシューマのデータの領域だと思っています。要はインターネットを介したデジタルなデータの分野は、すでにネット系のプレイヤーが色々とやっています。一方で物理的なところと切り離せない領域、医療もそうですが、これはまだネット系のプレイヤーもほとんど手つかずです。

食の領域もそうですね。例えばレシピは、データがフィジカルなので、あまりきちんと整備されていない。ここが整備されていくと、新しい料理をAIが発明したり、その人の今食べたいものと料理のスキル、あとは冷蔵庫の中に何が入っているかを総合的に見て、作り方まで含めた献立の提案ができる世界も可能です。これをやろうとすると、一社だけではできない。栄養という観点でいうと、先ほどの医療にもつながっていきますし、食周りのデータにAIを活用するというのはあると思います。

杉原:確かに食もパーソナライゼーションされていくほど最適解みたいなものが出てきますよね。と同時に、要はフードロスの防止にもつながると思います。だいたい日本だと年間600万トンくらい捨てられていて、実は事業者と一般家庭は、ほぼ同じくらいの量を捨てているそうなんです。ということは、まず冷凍庫の中の最適解がまだ出ていないのではないかと。買い物に対してのレコメンデーションが出てくればロスを減らせるし、そういう世界も、悪くないなと思います。スーパーマーケットで先に買っておいてくれるとか。

椎橋:結局、ネットのデジタルな消費って消費者の消費活動でいうとかなり部分的ですよね。フィジカルな領域の消費データにきちんとアルゴリズムやAIが入っていけば、バリュー地点をさかのぼって、産業全体のデータをつなげて、より効率化していくということが絶対に起こってくると思います。

杉原:僕らはデータを提供したら、1人あたり年間で何百万円かもらえる世界がくるだろうと予想しています。65歳以上からは年金をもらわなくても、たぶんデータ提供者にお金がもらえるみたいな未来が来るんじゃないかと。

椎橋:これまでのインターネットを中心としたイノベーションは、GAFAやBATなどの米中のインターネットジャイアントがデータを全部抱え込む世界でした。それに対して、ヨーロッパのGDPR(EU一般データ保護規則)などの動きもそうですが、個々人が自分のデータを管理するという分散型の方向に行ったほうが健康的ですよね。それが成り立ちうるひとつの領域が医療です。だから医療を起点に、それぞれが自分のデータを管理して、それを適切な範囲で提供することで、誰かに対して価値を提供して対価を得る。そういう社会的な構造を日本のマーケットで世界に先駆けて作って、その形を海外に展開していくことができると、すごく面白いと思います。まさに医療かつ高齢者という部分では、日本は世界最先端の課題先進国ですし。

杉原:今後日本の新しい産業を支えていく上では根幹となっていく部分かなと僕も思っています。課題先進国というのはある意味ラッキーですよね。

テックビジネスで
必要なのは技術の俯瞰図

杉原:一方でAIの世界は進化が速いですよね。そうすると、ビジネス側も研究をおろそかにできないと思います。それについてはどう考えていますか?

椎橋:AIもそうですが、あらゆるイノベーションが起こっている時は、まず学術的な領域から論文などの形で新しい技術が発表され、新しい手法が科学的に確立され、それが実用可能な技術に落とし込まれ、さらに現場で使えるソリューションになっていくという、一連の流れがあります。その意味で、アカデミアの先端にきちんとキャッチアップながら、それをどう使えばどんな産業ビジネス的な価値につながるのかということを考えることが大事だと思います。

ただ、学術的に新しいことを生み出すことをスタートアップ企業がやらなきゃいけないかというと、必ずしもそうではないですよね。どちらかというと、全体像がきちんと見えていて、技術の俯瞰地図を持っているということが必要です。つまり、この技術を探ろうと思ったらこの研究者にあたればいいとか、この論文を見ればいいとかいう全体図ですね。医療に例えれば、各専門医をつなげられる総合医のような立場です。これからスタートアップを起こす時には、実現したいことに対して、全体的なマップを見て、「これを実現するためにはこの専門医とこの専門医とこの専門医に聞きに行くのが重要だ」とか、「これをつなげるのが重要だ」とか、そう考えられることが大事ですね。

杉原:あとは誰とコラボやアライアンスを組んでいくかというのが大事になりますよね。実現したい未来に対して、1人ではなかなかチャレンジできませんから。HERO Xも、ここがコミュニティの場になって、様々なものが生まれていけばいいなと思っています。

椎橋徹夫(しいはし・てつお)
米国州立テキサス大学理学部物理学/数学二重専攻卒。ボストンコンサルティンググループに入社後、東京オフィス、ワシントンDCオフィスにてデジタル・アナリティクス領域を専門に国内外の多数のプロジェクトに携わる。BCG社内のテクノロジーアドバンテージグループのコアメンバーとして、ビッグデータ活用チームの立上げをリード。のちに東京大学工学系研究科松尾豊研究室にて産学連携の取り組み、データサイエンス領域の教育、企業連携の取り組みに従事。2016年、株式会社Laboro.AI(https://laboro.ai/)を創業、代表取締役CEOに就任

関連記事を読む

(text: 吉田直子)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー