対談 CONVERSATION

認知症傾向の検出もAIで。岡田将吾の気になる研究 後編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。前編では、氏がこのAIの研究に至った経緯や実情について伺った。後編では、認知症の初期症状などを読み取るために、研究の成果がどう活かされているのか? 気になる具体例やそれがもたらす今後の展望を語っていただいた。編集長・杉原が描く未来との共通点とは?

複数の行動データから認知症傾向を読み取る

杉原:岡田さんのプロジェクトのひとつは、認知症の症状を読み取るというものですよね。

岡田:そうですね。老人ホームのどの場所でよく生活していたのかという行動のデータを取りながら、高齢者にロボットと対話してもらったりして、行動履歴・対話履歴といったデータを掛け合わせたものを分析すると、認知症予備軍といいますか、認知症傾向にある方がある程度判断できることを示しました。ただ、限られた人数での実験結果なので、結果の解釈には注意が必要です。

杉原:それは、(認知症の)進行度とかがわかるということですかね。

岡田:ある程度はそうですね。データがもっと増えてくれば、そういうことがより可能になってくると思います。ただ、難しいところが感情と一緒で、認知症かどうかの診断っていうのは、お医者さんがいろんな検査をした上で統合的に判断するものなので、認知症傾向を検出できるというと、言い過ぎになってしまうんです。僕らの研究での正解データは、認知症の傾向を測る簡易的なスクリーニングテストの点数ですから、あくまで行動データからAIがスクリーニングテストの結果の傾向を推定しました、ということになるんですよ。

「超高齢化社会こそ、テクノロジーにとっては多くのチャンスがある時代」だと常々言っている杉原。認知症検知のシステムには、これからを生き抜くヒントがあると感じている。

杉原:医療行為ではないってことですよね。あくまで予測、予防のアドバイス的な役割を果たすのが岡田さんの研究ということですね。

岡田:そうですね。「こういう可能性があるのですが、大丈夫ですか?」というようなことですね。あくまで診断ではなくて。

杉原: AIなので、どれだけデータを溜められるのかも重要ですよね。結構な日数のデータを採らないと所見というのはわかりませんし、行動に合わせてその変化を見ていくことも重要になりますよね。

岡田:まさに、そうですね。

杉原:取ったデータをAIで解析する出口としては、認知症に限らず何でもありなんですかね。

岡田:そういうことは言えると思います。ただ、自分が専門とする分野は、AIのなかでも機械学習というものと、あとはセンサーの時系列解析というものを合わせて、例えば認知症テストの点数の良し悪しを推定する技術までなんです。データの結果をどうやって活かしていくかということになると、いろんなものが考えられますが、ちゃんとしたサービスと考えると、まだ明確なものはできていないので、これからですね。

2019年、英・ケンブリッジ大学で開催された著名な国際学会“ACII”では、ジョージ・アンド・ショーン株式会社と岡田研究室の共著論文「ライフログを活用した認知症の早期検知」が採択された。

 熟練者から得たデータはいわば遺言みたいなもの!?

杉原:まだしっかりとした形になってはいなくても、いくつかお話していただけるプロジェクトはありますか?

岡田:例えば美容アドバイザーのコンサルティングのテクニックをモデル化するというフューチャー株式会社さんとの共同研究の試みにも携わっています。美容コンサルタントの第一人者で、非常に有名な小林照子さんというアドバイザーの方がいらっしゃいますが、小林さんは、クライアントに対して化粧の仕方だけでなく、これから何になりたくてどこに向かって行きたいのか? というようなライフスタイルのヴィジョンまで聞き出したり、提案したりするんですね。その小林さんのアドバイスのオリジナルメソッドを、AIを通して後世に伝えていけないだろうかと、いま試行錯誤しているところです。

杉原:それは面白いですね。

岡田:それでお弟子さんと小林照子さんのコンサルの仕方を、音声やジェスチャー、目線などのデータとして読み取って、“上手なコンサル”のノウハウみたいなものを積み上げていこうとしています。

岡田氏は、「人間の内面を数値化、可視化できれば、これまでできなかった試みがいろいろできるようになる」という。

杉原:そのデータが溜まってくれば、小林照子さんがこれまで感覚的にやってきたものが、数値として見えるようになる。まさにテクノロジーでわかりやすく提示するということですね。

岡田:そういうことを実現していければいいですよね。

杉原:そういうデータの集積っていうものは、成功された方や、その道の第一人者の方々の「遺言」みたいな感じになりそうですね(笑)。

岡田:そういうものの最初の例みたいになったらいいですね(笑)。確かに自分の遺言になるようなものを後世に残したい気持ちはあります。

杉原:例えばウォルト・ディズニーがまだ生きていたら、彼の感覚的な部分や、言葉のチョイスだったりをAI化していくと考えたらすごいですよね。それが精度の高いものであれば、ウォルト・ディズニーが永遠にコンサルできるってことですよね(笑)。

岡田:何年経ってもアニメーターに厳しく的確な指示を出し続ける。そんなことができるかもしれません(笑)。

コミュニケーションスキルの問題点もデータから紐解く

杉原:自分の会社も先代がもう亡くなっていますが、会社経営って意味では、蘇ったらめちゃくちゃ嫌ですけどね(笑)。それはスポーツの世界にも活用できそうですね。

岡田:そうですね。チャンスがあれば、何か一緒に取り組めたら面白いですね。

杉原:例えば、過疎が進んでいる場所とかもそうですし、そうではなくても、いまは子供たちが自由にスポーツできる場所も少なくなってきています。そうすると良質の指導を受ける機会も減りますよね。

岡田:スポーツがのびのびできる場所は、確かに昔より少ないかもしれません。

杉原:そういった状況に対して、チュートリアル的な取り組みも可能になっていくということですね。極端に言えば、イチロー選手のメソッドがあって、そのメソッドを、AIを通して効率よく伝えていければ、イチローさんを知らない子供たちがイチローさんの弟子になるみたいな感じですね。

岡田:そうですね。例えば若い担い手の少ない伝統芸術の職人さんなどの技術やメソッドを、情報化して伝えていければ面白いかなと思います。アメリカの南カリフォルニア大の研究グループは、戦争の体験者の姿をVirtual Reality(VR)の技術で再現し、また体験に関する証言もコンピュータに蓄積することで、戦争の体験に関してVR上の体験者と実際に質問応答の対話ができるシステムを作りました。実際のミュージアムでこのシステムが展示されたようです。

杉原:確かに人々が防げるものを事前にアドバイスできれば、それを回避することができますよね。認知症もそのひとつですね。あとは先ほどの小林照子さんのような技術を紡いで継承していくようなもの。そのほかに岡田さんの研究が活かせるものは何かありますか?

岡田:あとはコミュニケーションのスキルですかね。例えばプレゼントとかで、説明の質を上げることにも活用できます。わかりやすい説明だったか? 流暢に喋れたか? などをあらゆるデータから自動推定して、あなたのプレゼンのこの部分がちょっとわかりづらいみたいなものを割り出す研究もしています。

杉原:それは助かるなぁ(笑)。ゲーム感覚にもなりますね。自分で100%だと思ったとしても、例えば70%だと判定されれば、こことここは直さないといけないってなりますよね。

岡田:そこで逆に、AIに指摘されたところだけがうまくなってしまうこともありそうですけど(笑)。

杉原:それだけ様々な出口がある岡田さんの研究ですけど、一歩先の未来を考えたとき、どんな分野に一番応用されそうですか?

岡田:どれもまだ一歩足りないんですが、やはり高齢者関連は大事だと感じています。例えば老人ホームを利用している高齢者が、実際に普段はどんな生活をしているかというライフログを、ご家族がまとめて見たいというニーズは高まっています。推定するだけじゃなくて、そういう行動を可視化するだけで、様々な対応ができるようになりますから、高齢者自体のライフスタイルの質も、その家族の気持ちも、全然変わりますよね。

杉原:確かにそうですね。僕も超高齢化社会は逆にチャンスだと感じていますから、これから面白いことがいろいろできる未来がやってくると思っているんですよ。

岡田:僕もこういう時代だからこそ楽しんで、やはり若いときのテンションやパッションを持ったまま、年老いて死んでいきたいと思っています(笑)。そのために若い頃の感覚・新鮮さを忘れないように心がけていますし、社会的にもそんな自分の思いや経験を行動として伝承できる技術を作りたいという思いが、常にあります。

杉原:そういう未来は、自分で作るしかないですね。

岡田:待っていても歳はとっちゃいますからね(笑)。

前編はこちら

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

安定の旨さはロボットがつくる時代へ?! 外食産業から始まる調理ロボットの可能性

二回目の緊急事態宣言によって、飲食店の営業が20時までと制限され、多くの店舗が苦境に立たされているのは周知の通り。営業補償や支援金について大きな論争となっているが、そもそも外食産業は慢性的な人手不足が問題視されており、そこには低い収益構造や劣悪な労働環境といった要因が温存されてきた。そう、コロナがあろうがなかろうが、そもそも外食産業は新陳代謝が激しく、継続するのが困難な産業であるのだ。そこに全自動の調理ロボットの開発と運用によって、こうした諸問題の解決と産業構造全体の変化の必要性を訴えるのがTechMagic(テックマジック)株式会社である。今回は同社の代表取締役社長・白木裕士氏をゲストに招き、編集長・杉原行里とのオンライン対談が行われた。

付加価値の低い作業をロボットが担うことで、
より付加価値の高い作業に人の手を割くべき

杉原:初めまして杉原と申します、よろしくお願いします。さて、最初にテックマジック社を設立した経緯について教えてください。

白木:そもそものきっかけは、祖母が栄養の偏った食生活をしていた現実を目の当たりにしたことです。高齢者だからこそ、栄養バランスが取れた美味しい食事を提供したい、そしてスマホのボタンを押したら、調理ロボットが栄養管理をしながら好きな料理を好きな時に作ってくれる世界を創り、人類を調理から解放したいという想いから、調理ロボットの開発を目指してテックマジックを創業しました。

杉原:御社のWEBサイトを拝見しましたが、テックマジックのロボットを導入しているのは大手外食チェーン店なのですね。

白木:はい、目指すべき姿は家庭用調理ロボットですが、現状では外食大手企業が我々の主な顧客となっています。外資系コンサルで勤めていた時に、外食産業の80%超が人手不足に悩まされ、たった5%という低い利益率であるという課題に気付きました。収益構造を調べてみると、人件費が30%、原材料費が40%、残った30%から家賃や光熱費を差し引いた5%未満が利益という企業が多いのです。そこで、外食向けには費用対効果を実感していただける調理ロボットを開発し、付加価値が比較的低い業務自動化ロボットとして厨房機器大手フジマック社と洗浄自動仕分けロボット、食品メーカーのキユーピー社とは盛付ロボットを開発しています。

杉原:この対談の前に調べて驚いたのは、日本全体で飲食業を含めたフードビジネスに関わる人が1000万人もいるということでした。人口の約1/12をも占める食産業の利益率が低いままだと、日本全体のGDPが豊かになることはありませんよね?

白木:そうですね。厚生労働省の予測では、日本の生産年齢人口は2040年までに20%減少する見通しがされており、当然その分のGDPも低下してしまいます。実は日本のGDP、雇用のシェアの約70%がサービス産業なんです。その中の食産業は、決して生産性が高くなく、改善余地はまだまだあり、仮に生産性を20%でも向上させることができれば、日本全体のGDPが改善する処方箋になると思うのです。社会課題である少子高齢化による労働力不足に対し、食産業の最適化は日本の将来のためにも取り組むべき重要な課題だと考えています。

杉原:日本の飲食店は開業からたった2年で50%以上が潰れるそうですね。10年以内の生存率が30%以下というデータも見ました。そうした中で、ロボットを導入することで、企業の持続可能年数が伸びるのでしょうか?

白木:正直なところ、まだデータで検証できていないのですが、調理ロボットを導入した店舗とそうでない店舗を比較して、利益率アップに貢献できていれば、生存率がグッと上がるはずです。これからさらなる検証を重ねて、数値化したいと思っています。

杉原:RDSでも自動化というソリューションを重要視しているので、テックマジックの取り組みに非常に共感しています。コロナウイルスの感染防止対策という点でも、調理の完全自動化は追い風になっているのではないでしょうか?

白木:コロナが食産業のDX加速の追い風になっているのは間違いないです。3~5年ほど未来が早くきていると感じています。特に社長や経営層がDXの意思決定をしている企業は動きが早いように感じています。私たちは、案件の依頼があっても挑戦すべき案件とお断りする案件を、消費者への付加価値の高さで棲み分けています。例えば、調理ロボットは、注文に応じた具材・ソースを定量的に供給し、決められた温度と時間で調理し、使用したフライパンを洗浄するという一連の作業を自動化していますが、この作業は比較的付加価値が低いと考えています。一方で接客をしたり、メニューの案内をしながら配膳する作業は、消費者にとっては付加価値が高い作業と考えており、従業員の方がやるべきだと思います。このように自動化領域をお客様と相談しながら、進めています。

杉原:確かに、以前僕が中国で体験した配膳ロボットは、ちょっと違和感がありました。やはり、付加価値の高い作業は人にゆだねる。ロボットで自動化した方がいいこととちゃんと切り分ける考え方は非常に共感できます。うまく分業することで得られる作業効率をいかにバリューに変えていくか、また料理の美味しさの分岐点はどの辺なのかもポイントですね、非常に面白い視点です。

チェーン店でのバイト経験で得た現場の問題と
コロナ禍における自動化ニーズの高まり

白木:調理ロボットに人生を賭けようと決意してコンサル会社を辞めてから、外食産業の現場を知りたくて、とある大手チェーン店でバイトをしたんです。

杉原:相手にとっては、超扱いづらいバイトが来ちゃった!という感じですよね(笑)。

白木:そうだったでしょうね(笑)。実際に働いてみて分かったのは、何から何までマニュアル化されていることでした。例えば、このメニューは、玉ねぎを30グラム計ってから、鍋に入れて、何分間加熱するということまで規定されているのです。でも、実際の現場ではおよそこれくらいだろうと一掴みして鍋に入れていたのです。これは調理の安定性にも欠けると思いましたし、衛生面でも疑問符が付きました。しかも、その作業をつまらなそうにやっている。こうした生産性が低くて付加価値の低い作業を、自動化できればいいなと。

杉原:おっしゃる通り、付加価値の低い単純作業は自動化されるべきだと思いますし、コロナ禍においてそのニーズは高まっていると感じています。ちなみに国内におけるコンペティターはあるのですか?

白木:今のところ国内で意識している企業はありません。ただ、中国や米国には、様々な調理ロボット企業が存在しているので、スピードとスケールを重視しないといけないと危機感はもっています。しかし、先ずは今一緒に取り組んでいるお客様の成長に繋がる実績を積むことが最優先だと思っています。

世界のどこにいても人気店の和食が食べられる
そんな未来がロボットによって可能になる

杉原:自分で調理をしている人なら実感できると思うのですが、いくらスケールメリットがあるとしても、美味しくて安全な食事にはそれなりのコストと手間がかかってしまう。その点では、タニタ食堂や大戸屋さんなどのレシピを、テックマジックのロボットが調理して、適正な値段で提供したら、たくさんのお客さんが集まるのではないでしょうか?

白木:確かにタニタ食堂さんや大戸屋さんで、我々のロボットを導入していただいて実績を作ることができればいいですね。美味しくて健康的な食事という、お客様に喜ばれるブランディングが不可欠になってくると考えます。

杉原:弊社ではウェルネス分野にも力を入れていて、人体スキャンによる身体データの可視化に力を入れています。歩行や座位のデータがあれば、リハビリや医療に転用できるし、今後ビッグデータ化できれば、より良い医療に貢献できると思うからです。弊社では医療行為はできませんが、まずはデータ解析によって、高齢者の転倒事故を防止することができると考えています。こうしたデータをもとにして、食を通じた健康、ウェルネスといった分野にもロボットが貢献できる可能性は大いにありますよね。

白木:栄養バランスに最も気を付けなければならない層といえば、生活習慣病のある方や高齢者になりますが、データ解析を利用して、こうした方に最適な食事を提供できることも今後視野に入れていきたいですね。一般的にロボットは日本の得意分野だと思われがちですが、突出して成功した日本企業がないというのも事実です。いかにリアリティを持って、ロボットが実社会で活躍できる場面を作ることができるのか? ようやく今、その取り組みが始まるところなのかなというのが実感です。

杉原:個人的には人間の脳や感覚を、絶対的なものとして捉えていないのです。例えば、どんなに美味しいコース料理をいただいたとしても、隣の客が騒がしくて不愉快だったら、決して美味しいとは思わないからです。では、人間にとって本当に美味しいということは、どういうことでどういう状態なのか? その定義は人によって変わってくるし、時代によっても変わってくると思うのです。ですから、AIロボットによって、美味しいを再定義することができたら、すごいイノベーションになるはずですよね。

白木:その人にとっての美味しさとはどういうものなのかということを、ある程度予測できるようになると面白いですね。こうして杉原さんとお話をしていると、調理ロボットの可能性がまだまだあるなと感じます。私は登山が好きで、何度か富士山にも登ったことがあるのですが、山頂で食べるカップラーメンって最高なんですよね。それが有名店の和食だったらと想像してみるんです。あくまで例え話ですが、調理ロボットを富士山の頂上に持っていって、人気店TOP50のメニューを再現することができたら、それは新しい価値を生み出したことになると思います。もちろん、ロボットを山頂まで持っていくのは至難の技ですけど(笑)。

杉原:富士山頂からの絶景を見ながら人気店の和食をいただくなんて、ものすごい体験価値ですよね。3Dプリンターがまさにその話と同じだと思うのです。データさえあれば、もはや場所はどこでもいいわけで、有名店の和食が海外でも再現できたら、大ヒットするでしょうね。そこでしか食べられないレシピを、ロボットによって再現してどこにいても食べられることができる世界がやってきたら本当にエキサイティングですよね。

白木裕士(しらき・ゆうじ)
高校から大学までカナダに単身留学。新卒で外資系経営コンサル会社・ボストンコンサルティンググループに入社。2018年2月にTechMagic株式会社を創業。ロボットを活用して生産性を高め、社会課題解決に向けたさまざまな開発に取り組んでいる。

 

関連記事を読む

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー