対談 CONVERSATION

認知症傾向の検出もAIで。岡田将吾の気になる研究 後編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。前編では、氏がこのAIの研究に至った経緯や実情について伺った。後編では、認知症の初期症状などを読み取るために、研究の成果がどう活かされているのか? 気になる具体例やそれがもたらす今後の展望を語っていただいた。編集長・杉原が描く未来との共通点とは?

複数の行動データから認知症傾向を読み取る

杉原:岡田さんのプロジェクトのひとつは、認知症の症状を読み取るというものですよね。

岡田:そうですね。老人ホームのどの場所でよく生活していたのかという行動のデータを取りながら、高齢者にロボットと対話してもらったりして、行動履歴・対話履歴といったデータを掛け合わせたものを分析すると、認知症予備軍といいますか、認知症傾向にある方がある程度判断できることを示しました。ただ、限られた人数での実験結果なので、結果の解釈には注意が必要です。

杉原:それは、(認知症の)進行度とかがわかるということですかね。

岡田:ある程度はそうですね。データがもっと増えてくれば、そういうことがより可能になってくると思います。ただ、難しいところが感情と一緒で、認知症かどうかの診断っていうのは、お医者さんがいろんな検査をした上で統合的に判断するものなので、認知症傾向を検出できるというと、言い過ぎになってしまうんです。僕らの研究での正解データは、認知症の傾向を測る簡易的なスクリーニングテストの点数ですから、あくまで行動データからAIがスクリーニングテストの結果の傾向を推定しました、ということになるんですよ。

「超高齢化社会こそ、テクノロジーにとっては多くのチャンスがある時代」だと常々言っている杉原。認知症検知のシステムには、これからを生き抜くヒントがあると感じている。

杉原:医療行為ではないってことですよね。あくまで予測、予防のアドバイス的な役割を果たすのが岡田さんの研究ということですね。

岡田:そうですね。「こういう可能性があるのですが、大丈夫ですか?」というようなことですね。あくまで診断ではなくて。

杉原: AIなので、どれだけデータを溜められるのかも重要ですよね。結構な日数のデータを採らないと所見というのはわかりませんし、行動に合わせてその変化を見ていくことも重要になりますよね。

岡田:まさに、そうですね。

杉原:取ったデータをAIで解析する出口としては、認知症に限らず何でもありなんですかね。

岡田:そういうことは言えると思います。ただ、自分が専門とする分野は、AIのなかでも機械学習というものと、あとはセンサーの時系列解析というものを合わせて、例えば認知症テストの点数の良し悪しを推定する技術までなんです。データの結果をどうやって活かしていくかということになると、いろんなものが考えられますが、ちゃんとしたサービスと考えると、まだ明確なものはできていないので、これからですね。

2019年、英・ケンブリッジ大学で開催された著名な国際学会“ACII”では、ジョージ・アンド・ショーン株式会社と岡田研究室の共著論文「ライフログを活用した認知症の早期検知」が採択された。

 熟練者から得たデータはいわば遺言みたいなもの!?

杉原:まだしっかりとした形になってはいなくても、いくつかお話していただけるプロジェクトはありますか?

岡田:例えば美容アドバイザーのコンサルティングのテクニックをモデル化するというフューチャー株式会社さんとの共同研究の試みにも携わっています。美容コンサルタントの第一人者で、非常に有名な小林照子さんというアドバイザーの方がいらっしゃいますが、小林さんは、クライアントに対して化粧の仕方だけでなく、これから何になりたくてどこに向かって行きたいのか? というようなライフスタイルのヴィジョンまで聞き出したり、提案したりするんですね。その小林さんのアドバイスのオリジナルメソッドを、AIを通して後世に伝えていけないだろうかと、いま試行錯誤しているところです。

杉原:それは面白いですね。

岡田:それでお弟子さんと小林照子さんのコンサルの仕方を、音声やジェスチャー、目線などのデータとして読み取って、“上手なコンサル”のノウハウみたいなものを積み上げていこうとしています。

岡田氏は、「人間の内面を数値化、可視化できれば、これまでできなかった試みがいろいろできるようになる」という。

杉原:そのデータが溜まってくれば、小林照子さんがこれまで感覚的にやってきたものが、数値として見えるようになる。まさにテクノロジーでわかりやすく提示するということですね。

岡田:そういうことを実現していければいいですよね。

杉原:そういうデータの集積っていうものは、成功された方や、その道の第一人者の方々の「遺言」みたいな感じになりそうですね(笑)。

岡田:そういうものの最初の例みたいになったらいいですね(笑)。確かに自分の遺言になるようなものを後世に残したい気持ちはあります。

杉原:例えばウォルト・ディズニーがまだ生きていたら、彼の感覚的な部分や、言葉のチョイスだったりをAI化していくと考えたらすごいですよね。それが精度の高いものであれば、ウォルト・ディズニーが永遠にコンサルできるってことですよね(笑)。

岡田:何年経ってもアニメーターに厳しく的確な指示を出し続ける。そんなことができるかもしれません(笑)。

コミュニケーションスキルの問題点もデータから紐解く

杉原:自分の会社も先代がもう亡くなっていますが、会社経営って意味では、蘇ったらめちゃくちゃ嫌ですけどね(笑)。それはスポーツの世界にも活用できそうですね。

岡田:そうですね。チャンスがあれば、何か一緒に取り組めたら面白いですね。

杉原:例えば、過疎が進んでいる場所とかもそうですし、そうではなくても、いまは子供たちが自由にスポーツできる場所も少なくなってきています。そうすると良質の指導を受ける機会も減りますよね。

岡田:スポーツがのびのびできる場所は、確かに昔より少ないかもしれません。

杉原:そういった状況に対して、チュートリアル的な取り組みも可能になっていくということですね。極端に言えば、イチロー選手のメソッドがあって、そのメソッドを、AIを通して効率よく伝えていければ、イチローさんを知らない子供たちがイチローさんの弟子になるみたいな感じですね。

岡田:そうですね。例えば若い担い手の少ない伝統芸術の職人さんなどの技術やメソッドを、情報化して伝えていければ面白いかなと思います。アメリカの南カリフォルニア大の研究グループは、戦争の体験者の姿をVirtual Reality(VR)の技術で再現し、また体験に関する証言もコンピュータに蓄積することで、戦争の体験に関してVR上の体験者と実際に質問応答の対話ができるシステムを作りました。実際のミュージアムでこのシステムが展示されたようです。

杉原:確かに人々が防げるものを事前にアドバイスできれば、それを回避することができますよね。認知症もそのひとつですね。あとは先ほどの小林照子さんのような技術を紡いで継承していくようなもの。そのほかに岡田さんの研究が活かせるものは何かありますか?

岡田:あとはコミュニケーションのスキルですかね。例えばプレゼントとかで、説明の質を上げることにも活用できます。わかりやすい説明だったか? 流暢に喋れたか? などをあらゆるデータから自動推定して、あなたのプレゼンのこの部分がちょっとわかりづらいみたいなものを割り出す研究もしています。

杉原:それは助かるなぁ(笑)。ゲーム感覚にもなりますね。自分で100%だと思ったとしても、例えば70%だと判定されれば、こことここは直さないといけないってなりますよね。

岡田:そこで逆に、AIに指摘されたところだけがうまくなってしまうこともありそうですけど(笑)。

杉原:それだけ様々な出口がある岡田さんの研究ですけど、一歩先の未来を考えたとき、どんな分野に一番応用されそうですか?

岡田:どれもまだ一歩足りないんですが、やはり高齢者関連は大事だと感じています。例えば老人ホームを利用している高齢者が、実際に普段はどんな生活をしているかというライフログを、ご家族がまとめて見たいというニーズは高まっています。推定するだけじゃなくて、そういう行動を可視化するだけで、様々な対応ができるようになりますから、高齢者自体のライフスタイルの質も、その家族の気持ちも、全然変わりますよね。

杉原:確かにそうですね。僕も超高齢化社会は逆にチャンスだと感じていますから、これから面白いことがいろいろできる未来がやってくると思っているんですよ。

岡田:僕もこういう時代だからこそ楽しんで、やはり若いときのテンションやパッションを持ったまま、年老いて死んでいきたいと思っています(笑)。そのために若い頃の感覚・新鮮さを忘れないように心がけていますし、社会的にもそんな自分の思いや経験を行動として伝承できる技術を作りたいという思いが、常にあります。

杉原:そういう未来は、自分で作るしかないですね。

岡田:待っていても歳はとっちゃいますからね(笑)。

前編はこちら

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

行動から人の内面状態を読み取るAI!?岡田将吾の気になる研究 前編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。同氏の試みは、人間の内面の状態を理解するためのAIの新分野として世界から注目を浴びる。これらの研究は認知症の初期症状などを読み取る手がかりにもなるという。編集長・杉原が、最先端の研究の現状とその先に広がる未来について伺った。

人の行動から内面状態を理解するという試み

杉原:もともと岡田さんは、大学でいわゆるAIに関する研究をされていたんですか?

岡田:そうですね。人工知能を基本に、修士、学士と約5年間研究をしまして、少しずつ人の行動を予測するとか、人の行動からコンテキストを推定するということにフォーカスするようになりました。 例えば、この人のしゃべり方や使う言葉の特徴がこうなら、この人はロボットとのおしゃべりを楽しんでいるとか、いくつかの行動から、人の内面を予測するというような研究です。

杉原:今日は、話していて僕の思惑がバレるかもしれないから、サングラスか何か掛けたい気分です(笑)。

岡田:いや、僕自身は(内面を予測することは)できないですよ(笑)。システムにはできてしまうことがありますけどね。

人の行動から内面を読み取るという研究を続ける岡田氏。「最近は、手の動きと感情の関係性が気になる」という。

杉原:ならよかったです(笑)。岡田さんのそういった研究は、AIなどを通じて出口がたくさん出てきたという段階ですか?

岡田:そうですね。最近は動作を測るセンサーが安くなったりもして、状況が変わってきましたし、企業でも自分たちのような研究をしているところが出てきました。そういうプロジェクトに自分が加わることも増えてきて、出口は広がったと感じています。

杉原:もともと岡田さんがAIに興味を持ったのは、どういった経緯でしょうか?

岡田:最初は大学で物理をやっていたのですが、物理の世界っていろいろと難しくて挫折してしまいました。それで物理の先生にはちょっと失礼なんですが(笑)、もう少し目に見えてわかりやすいことがやりたいと思って、ロボットに顔の認識や画像の認識をさせて動かすという研究をやっている研究室に入ったんです。AIを研究し始めたのは、そこからですね。

杉原:岡田さんのような分野の研究者は、日本にどのくらいいらっしゃるんですか?

岡田:もちろん産官学で人工知能の研究をされているグループは山ほどありますけど、ピンポイントで、人の行動から内面状態を理解するみたいなことに焦点を当てているのは、僕たちと数えるくらいしかないです。

こちらは、2018年にジョージ・アンド・ショーン合同会社(現株式会社)と岡田研究室が共同で開設したG&S Labのイメージビジュアル。IoTデバイスであるbiblle(ビブル)を活用して、行動学習に特化した機械学習プログラムの開発を行っている。

もう多くの企業ではAIが採用面接をしている!?

杉原:表情から何かを読み取るということは、なんとなく僕もイメージできるんですが、そこから購買意欲だったり、そこに出口を見つけていくというのは、なんだか大学でやる研究っぽくないなと思いますね(笑)。

岡田:そう言われれば、そうかもしれないですね。

杉原:僕自身のイメージでは、大学の先生は研究を突き詰めて、あとはアウトプットを第三者に見つけてもらう、そんなスタイルが多いなと常々感じているんですよ。それが出口までしっかりとしていて、岡田さんの研究は面白いなと思います。

岡田:そう言っていただけるとありがたいです(笑)。確かにそれは狙っていて、研究室でコンピューターの前に座って突き詰めるのではなく、実際のインパクトのあるデータに対して、なんらかの回答を出していくほうが、世の中的にも出口がわかりやすいですし、そういうことは意識していますね。

岡田氏の研究に興味津々の杉原。感情という抽象的なものを数値化するという試みには、シンパシーを感じているようだ。

杉原:世界的にはどうなんですか?

岡田:コンピューティング分野の国際会議のような場には、アメリカ、ヨーロッパの有名大学の研究者が集まってきますが、そこでは感情を理解するという研究が一番多いように感じます。コンピューターにいろいろな感情を理解させるということが基本ですけど、話している声や内容、表情からコミュニケーションのスキルを推定するということも盛んになってきてはいます。AIによる企業の採用面接みたいなものもそうですね。

杉原:確かにそういう面接は、実際にあるようですね。

岡田:面接で一言、二言答えたことから推測して、その人(のスキル)を判定するということですよね。あらゆる企業は、もうAIを様々活用しているのですが、採用には特定の人しか受からないとか、雇用差別・公平性の問題が出てきたりもしています。自分も就職面接のように実際に多くの人を呼んで、はじめて会った学生同士でディスカッションをしてもらい、そのビデオを人材派遣の会社に送って、人事の採用担当者に点数をつけてもらうという試みをしたことがあります。同じようにAIにも判断してもらったら、熟練の採用担当者と同じように人を選ぶのかどうかを検証しました。その実験は、学会でも良い評価をもらいましたが、アプリケーションとして見た場合、考慮すべき課題が多いと感じます。ですので、そういうスキル判定の技術を使って、スキルを上達させるための訓練に活かすことを、これからはやっていきたいですね。困っている人が喜ぶようなアプリとして機能できればと思っています。

感情を数値化するには、大きな課題がいくつもある

杉原:なるほど、それは興味深いですね。もうひとつお聞きしたいのが、“感情”っていうのは数値化も可視化もしにくいのではないか、ということです。実際に研究は進んでいるんでしょうか?

岡田:そうですね、難しいところも確かにあります。いま主にやっていることは、心理学者たちがこれまでに作った評価指標に則って、実験後に、いまあなたの感情はいくつでしたか? というように被験者に問いかけたり、第三者に被験者の映像を見せて、被験者の感情状態はどうなっていると考えられますか? というようにアンケートを書いてもったりする手法なんです。それをもとに人工知能が答えを導き出すわけですから、そもそものアンケートの答えが間違っていると、人工知能的にはもう破綻してしまう。そこが弱点でもありますね。

杉原:まず、ちゃんとしたデータを取ることが難しいんですね。

岡田:正解のデータがしっかりと作れなければ、人工知能は動けませんから。正直、感情って自分で数値をつけるのは難しいですよね。

杉原:自分でも自分の感情が一番わからないこともありますよね(笑)。

岡田:そういうものなんですよ(笑)。

杉原:以前の心理学者の研究だったり、研究論文なんかを追っかけながら、感情を紐解く要素を分析していくという手法はもちろんわかりますが、IoTを使ったデータ集めというのは、どうなんでしょう。世界的にはビッグデータは集まってきているんですか?

岡田:それも難しいところではあるんです。GAFAは、画像・音声を含めWeb上でたくさんの情報を集めていますが、普段の人同士の会話や、自然に対面コミュニケーションしているときのデータを膨大に集めるのは、まだまだ実際には難しいですよね。例えば感情データを集めるために、誰かが怒っているところをずっとビデオで撮るわけにもいかないですし、これからデータを取るので怒ってください、っていうのもおかしいですしね(笑)。多くの人が、AI speakerと友達のように頻繁に話す未来が来たら変わるかもしれませんが、AIの対話機能レベルから言って、それはもう少し先になりそうです。

杉原:確かにそうですね。

岡田:だから、自然にそういうデータをどうやったら取れるのか? っていうのは自分たちの研究の大きな課題ですね。

杉原:ライフログ的なところですね。とはいえ、無理やりIoT的な要素をくっつけたものを開発して使ってもらっても、結局使わなくなりますしね。

岡田:そうですよね、スマートウォッチとかもその一例だと思います。

杉原: スマートウォッチが出た当初はすぐに買いましたけど、3日後にはこれまで使っていた普通の時計が恋しくなってしまいました(笑)。でもいまは、Apple Watchなどがセンシングに使われていますよね。睡眠だったり、バイタルだったり。そういう使われ方をしているのは有意義だと思います。

岡田:そうですね、そのような使い方は興味深いです。最近私たちもスマートウォッチのようなセンサを使った研究を始めています。とはいえ自分たちの研究は、いまはデータを採取するのにビデオの前に人を座らせなきゃならないので、常に記録するのが難しい状況です。なので、毎日何かを記録すれば、健康がチェックできるとか、そういう多くの人に受け入れやすいアプリなどを通して、効率よくデータを取る方法を模索して行こうと思っています。

後編へつづく

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー