対談 CONVERSATION

認知症傾向の検出もAIで。岡田将吾の気になる研究 後編

長谷川茂雄

人と人とのコミュニケーションに必要なものは、言語だけにあらず。視線やジェスチャー、表情といった非言語情報も不可欠であることはいうまでもない。岡田将吾氏は、それを社会的信号処理という新しい領域に基づいた研究を通して読み取ることを実践する先駆者のひとり。前編では、氏がこのAIの研究に至った経緯や実情について伺った。後編では、認知症の初期症状などを読み取るために、研究の成果がどう活かされているのか? 気になる具体例やそれがもたらす今後の展望を語っていただいた。編集長・杉原が描く未来との共通点とは?

複数の行動データから認知症傾向を読み取る

杉原:岡田さんのプロジェクトのひとつは、認知症の症状を読み取るというものですよね。

岡田:そうですね。老人ホームのどの場所でよく生活していたのかという行動のデータを取りながら、高齢者にロボットと対話してもらったりして、行動履歴・対話履歴といったデータを掛け合わせたものを分析すると、認知症予備軍といいますか、認知症傾向にある方がある程度判断できることを示しました。ただ、限られた人数での実験結果なので、結果の解釈には注意が必要です。

杉原:それは、(認知症の)進行度とかがわかるということですかね。

岡田:ある程度はそうですね。データがもっと増えてくれば、そういうことがより可能になってくると思います。ただ、難しいところが感情と一緒で、認知症かどうかの診断っていうのは、お医者さんがいろんな検査をした上で統合的に判断するものなので、認知症傾向を検出できるというと、言い過ぎになってしまうんです。僕らの研究での正解データは、認知症の傾向を測る簡易的なスクリーニングテストの点数ですから、あくまで行動データからAIがスクリーニングテストの結果の傾向を推定しました、ということになるんですよ。

「超高齢化社会こそ、テクノロジーにとっては多くのチャンスがある時代」だと常々言っている杉原。認知症検知のシステムには、これからを生き抜くヒントがあると感じている。

杉原:医療行為ではないってことですよね。あくまで予測、予防のアドバイス的な役割を果たすのが岡田さんの研究ということですね。

岡田:そうですね。「こういう可能性があるのですが、大丈夫ですか?」というようなことですね。あくまで診断ではなくて。

杉原: AIなので、どれだけデータを溜められるのかも重要ですよね。結構な日数のデータを採らないと所見というのはわかりませんし、行動に合わせてその変化を見ていくことも重要になりますよね。

岡田:まさに、そうですね。

杉原:取ったデータをAIで解析する出口としては、認知症に限らず何でもありなんですかね。

岡田:そういうことは言えると思います。ただ、自分が専門とする分野は、AIのなかでも機械学習というものと、あとはセンサーの時系列解析というものを合わせて、例えば認知症テストの点数の良し悪しを推定する技術までなんです。データの結果をどうやって活かしていくかということになると、いろんなものが考えられますが、ちゃんとしたサービスと考えると、まだ明確なものはできていないので、これからですね。

2019年、英・ケンブリッジ大学で開催された著名な国際学会“ACII”では、ジョージ・アンド・ショーン株式会社と岡田研究室の共著論文「ライフログを活用した認知症の早期検知」が採択された。

 熟練者から得たデータはいわば遺言みたいなもの!?

杉原:まだしっかりとした形になってはいなくても、いくつかお話していただけるプロジェクトはありますか?

岡田:例えば美容アドバイザーのコンサルティングのテクニックをモデル化するというフューチャー株式会社さんとの共同研究の試みにも携わっています。美容コンサルタントの第一人者で、非常に有名な小林照子さんというアドバイザーの方がいらっしゃいますが、小林さんは、クライアントに対して化粧の仕方だけでなく、これから何になりたくてどこに向かって行きたいのか? というようなライフスタイルのヴィジョンまで聞き出したり、提案したりするんですね。その小林さんのアドバイスのオリジナルメソッドを、AIを通して後世に伝えていけないだろうかと、いま試行錯誤しているところです。

杉原:それは面白いですね。

岡田:それでお弟子さんと小林照子さんのコンサルの仕方を、音声やジェスチャー、目線などのデータとして読み取って、“上手なコンサル”のノウハウみたいなものを積み上げていこうとしています。

岡田氏は、「人間の内面を数値化、可視化できれば、これまでできなかった試みがいろいろできるようになる」という。

杉原:そのデータが溜まってくれば、小林照子さんがこれまで感覚的にやってきたものが、数値として見えるようになる。まさにテクノロジーでわかりやすく提示するということですね。

岡田:そういうことを実現していければいいですよね。

杉原:そういうデータの集積っていうものは、成功された方や、その道の第一人者の方々の「遺言」みたいな感じになりそうですね(笑)。

岡田:そういうものの最初の例みたいになったらいいですね(笑)。確かに自分の遺言になるようなものを後世に残したい気持ちはあります。

杉原:例えばウォルト・ディズニーがまだ生きていたら、彼の感覚的な部分や、言葉のチョイスだったりをAI化していくと考えたらすごいですよね。それが精度の高いものであれば、ウォルト・ディズニーが永遠にコンサルできるってことですよね(笑)。

岡田:何年経ってもアニメーターに厳しく的確な指示を出し続ける。そんなことができるかもしれません(笑)。

コミュニケーションスキルの問題点もデータから紐解く

杉原:自分の会社も先代がもう亡くなっていますが、会社経営って意味では、蘇ったらめちゃくちゃ嫌ですけどね(笑)。それはスポーツの世界にも活用できそうですね。

岡田:そうですね。チャンスがあれば、何か一緒に取り組めたら面白いですね。

杉原:例えば、過疎が進んでいる場所とかもそうですし、そうではなくても、いまは子供たちが自由にスポーツできる場所も少なくなってきています。そうすると良質の指導を受ける機会も減りますよね。

岡田:スポーツがのびのびできる場所は、確かに昔より少ないかもしれません。

杉原:そういった状況に対して、チュートリアル的な取り組みも可能になっていくということですね。極端に言えば、イチロー選手のメソッドがあって、そのメソッドを、AIを通して効率よく伝えていければ、イチローさんを知らない子供たちがイチローさんの弟子になるみたいな感じですね。

岡田:そうですね。例えば若い担い手の少ない伝統芸術の職人さんなどの技術やメソッドを、情報化して伝えていければ面白いかなと思います。アメリカの南カリフォルニア大の研究グループは、戦争の体験者の姿をVirtual Reality(VR)の技術で再現し、また体験に関する証言もコンピュータに蓄積することで、戦争の体験に関してVR上の体験者と実際に質問応答の対話ができるシステムを作りました。実際のミュージアムでこのシステムが展示されたようです。

杉原:確かに人々が防げるものを事前にアドバイスできれば、それを回避することができますよね。認知症もそのひとつですね。あとは先ほどの小林照子さんのような技術を紡いで継承していくようなもの。そのほかに岡田さんの研究が活かせるものは何かありますか?

岡田:あとはコミュニケーションのスキルですかね。例えばプレゼントとかで、説明の質を上げることにも活用できます。わかりやすい説明だったか? 流暢に喋れたか? などをあらゆるデータから自動推定して、あなたのプレゼンのこの部分がちょっとわかりづらいみたいなものを割り出す研究もしています。

杉原:それは助かるなぁ(笑)。ゲーム感覚にもなりますね。自分で100%だと思ったとしても、例えば70%だと判定されれば、こことここは直さないといけないってなりますよね。

岡田:そこで逆に、AIに指摘されたところだけがうまくなってしまうこともありそうですけど(笑)。

杉原:それだけ様々な出口がある岡田さんの研究ですけど、一歩先の未来を考えたとき、どんな分野に一番応用されそうですか?

岡田:どれもまだ一歩足りないんですが、やはり高齢者関連は大事だと感じています。例えば老人ホームを利用している高齢者が、実際に普段はどんな生活をしているかというライフログを、ご家族がまとめて見たいというニーズは高まっています。推定するだけじゃなくて、そういう行動を可視化するだけで、様々な対応ができるようになりますから、高齢者自体のライフスタイルの質も、その家族の気持ちも、全然変わりますよね。

杉原:確かにそうですね。僕も超高齢化社会は逆にチャンスだと感じていますから、これから面白いことがいろいろできる未来がやってくると思っているんですよ。

岡田:僕もこういう時代だからこそ楽しんで、やはり若いときのテンションやパッションを持ったまま、年老いて死んでいきたいと思っています(笑)。そのために若い頃の感覚・新鮮さを忘れないように心がけていますし、社会的にもそんな自分の思いや経験を行動として伝承できる技術を作りたいという思いが、常にあります。

杉原:そういう未来は、自分で作るしかないですね。

岡田:待っていても歳はとっちゃいますからね(笑)。

前編はこちら

岡田将吾(おかだ・しょうご)
国立大学法人北陸先端科学技術大学院大学(JAIST)准教授。2008年東京工業大学大学院知能システム科学専攻博士課程修了。京都大学特定助教、東京工業大学大学院助教、IDIAP research institute 滞在研究員等を経て、2017年より現職。「社会的信号処理に基づく人間の行動やコミュニケーションの理解」を主要テーマに、AIの新たな領域の研究に取り組む。専門は、マルチモーダルインタラクション、データマイニング、機械学習、パターン認識ほか。

(text: 長谷川茂雄)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

RECOMMEND あなたへのおすすめ

対談 CONVERSATION

駐車場や空き店舗などの有閑スペースが物流倉庫に変身する!? GROUND株式会社がめざすスマート物流とは?

吉田直子

物流業界で急速に進んでいるテクノロジー化。その背景には、ここ数年で急激に成長したE-コマースの存在がある。消費者が1つのアイテムを通販でいつでもどこでも取り寄せることができる時代。大量で小ロッドのアイテムが行き来する時代に、倉庫ビジネスと配送の仕組みも、もはや従来通りにはいかなくなっている。AIやロボットを活用した物流改革は、今後どこまで進むのだろうか。物流施設の改革に取り組むGROUND株式会社の宮⽥啓友社長に、編集長・杉原が物流の未来を聞く。 ・コストのかさむコンベアとはさようなら ・めざすは物流倉庫のシェアリングモデル ・ロボット開発はビジョンを共有できるパートナーと

コストのかさむ
コンベアとはさようなら

杉原:いま、物流施設では、ハウスウェアデザインなどが進んでいる状況なのでしょうか。

宮田:突き詰めていうと、我々のPEER(ピア)(自律型協働ロボット)は、コンベアの代替にもなり得ます。いままではピッキング作業をしたら、かごをコンベアに載せて、梱包工程までガタガタ運んでもらうのが一般的でしたが、PEERは梱包工程まで自律的に移動しますから、コンベアが不要と言えます。実は、コンベアは1メートル40万円くらいするんです。物流施設を作ると必ずコンベアが必要なので、そこがこれまでは利益の源泉だったんですね。

杉原:それをなくすというのは、大変な戦いですね。

宮田:コンベアは施設の制約にもなります。メインストリームとしてコンベアが敷かれると、そこを横断できなくなるので、迂回する通路を作らなければいけない。でも、PEERのような自律型協働ロボットを導入すると、ビルの一室を物流センターにすることも可能です。従来は物流センターのための建物が求められたのですが、AIやロボットなどの先端テクノロジーを活用すれば、都心の地下駐車場、学校、百貨店、ガソリンスタンドなど、有閑スペースや資産を活用できる。アメリカではマイクロフルフィルメントセンターといって、小型の物流センターが少ずつイノベートされてきています。今後、物流業界には大きなパラダイムシフトが起こると思っています。1つの物流センターを作るために20億かけるという時代ではなくなっていくでしょう。

杉原:GROUNDさんの自律型協働ロボットですが、人間との協働がポイントではないかと思います。なぜ協働にフォーカスされているのでしょうか。

宮田:これはAmazonのジェフ・ベゾス氏も明言していますが、倉庫の完全自動化はあと10年は難しいと思います。仕組みとしては無人化できるのですが、やはり取り扱う商品の制約が出てしまう。ECで扱う商品は長尺のものもあれば、小さいものもあります。それを一つの概念で処理しようとすると、非常にムダが多くなる。なので、投資対効果が見合わない。ロボットが自動で次工程まで動いていくから、人は歩く必要はありません。ただ、例えばピンポイントでスカートをピックするというのは、ロボットにはまだできません。
このように人間が得意なこと、人間にしかできないことは人が行い、ロボットが得意なことはロボットに任せる、という協働という形が現時点では最も生産性を向上できると考えます。

人とGROUND社のロボットが協働する様子。作業者は同社のロボット「PEER」に付属するタブレットの案内に従い、指定の商品をピックアップする。

杉原:そうですね。SLAM(Simultaneous Localization and Mapping:センサーによって周囲環境を把握し、マップをつくりつつ、取得したデータをもとにロボットの自身の位置も推定する技術)で1センチ以内の誤差に収めるというのはとんでもない技術なので、キャリブレーションがかなりできていないと厳しいですよね。

宮田:工程ごとにロボットと人間の強みを分解して、人がやるべき作業、ロボットがやるべき作業を選別することが大切です。

杉原:つまり、ロボットと人間、双方のインテリジェンスやアビリティを掛け算しているんですね。補完ではなく拡張。これっていまの世の中にすごく合っていると思います。僕自身は今後ロボット化が進むことで、人間の本来使える時間が増えて、幸せだと思っているのですが、一方でAI化やロボット化で仕事を奪われると言うかたもいます。そこに協働があると、雇用が生まれるという考え方もできる。倫理的なバランスもいい。車もまさにそうで、自動運転化しても、やはりドライバーズシートには人が乗っていて、ステアリングがあるというのと同じではないかと思います。

宮田:近いですね。おっしゃる通り、物流業界の中を完全に無味乾燥なテクノロジーの世界にしていくという考えではありません。ECは伸びていますから、全体的に求められる人手は増えています。その中で、人がやらなくても良い過酷な労働や、業務・作業はロボットに任せる。こういった考えの下、物流業界を持続可能なものにしていくことが大前提です。

めざすは物流倉庫の
シェアリングモデル

杉原:宮田さんはやはり顧客ニーズというか、課題がかなり明確ですよね。今までご経験されたものが根幹にあると思うのですが、そういったご経験から起業を決意されたんですか。それとも、もともと事業のビジョンがあったのでしょうか。

宮田:楽天には7年間勤めたのですが、三木谷さんと一緒にずっとやってきて、Amazonと戦っていくうえでは、自社物流をやらないといけないという気持ちをもっていました。最終的には、当時は自社物流の構築を見送るという経営判断がくだされました。
オープンな物流プラットフォームの重要性と将来性は当時から強く感じていたので、1年準備をして、GROUNDを設立しました。創業メンバーも楽天時代の仲間です。

杉原:今後、AIがディープラーニングをしていった時に、どういう変革が起きますか? 例えば時間が圧倒的に短縮されることをめざしていくのか、それともまた違う展開がありますか。

宮田: ECは波動(物流量の偏り)が大きい業界です。週や月、年間を通した傾向もあります。アスクルは新年度の動きが大きかったですし、アパレルはクリスマスシーズンが伸びます。従来の物流投資というのは、会社の成長を見据えながら、この波動のてっぺんの部分をある程度想定してやっていきます。ですから、最初は投資した中で全体のキャパシティが6割くらいしかなくて、4割くらいはずっと空いている中で成長していきます。ということは、ムダがあるんです。一方で物流の設備は非常に流動性が高まっていて、先ほどの自律型協働ロボットなどを使った施設では、シェアオフィスしやすい。1つの建物の中に波動がかぶらないテナントを誘致すれば、ロボットや人を柔軟にシェアできる、あるいは建物自体も含めてシェアができる。最終的にめざしているのは、いわゆるサブスクモデルですね。利用・シェアした分だけ重量課金していく。もはや、そこでは自社の物量のキャパシティなんて考える必要はない。そこは、我々のAI物流ソフトウェアDyAS(ディアス)がブレーンとなり、様々な解析をして全体最適化を図ります、という形です。

杉原:まさにシェアリングエコノミーですね。一方で、いま、長崎でドローン配送が始まるなど、自動配送、遠隔操作の流れがあります。この潮流は、宮田さんから見ていい方向ですか?

宮田:いい方向ではあるのですが、物を運ぶ上でドローンやロボットを使う前に、やることはあると思います。例えば、ヤマト運輸が3年前に大きく一斉値上げしたのは、従来のCtoCの小包や宅急便が増えたのではなく、Amazonを中心とするECの物量がなだれこんできて、その需要予測ができないために、配車計画が立てられなくなったからです。なにが言いたいのかというと、配送会社に対してある程度精度の高い情報を提供できれば、彼らはそれに基づいて合理化ができるんですね。

杉原:ええ、間違いないですよね。

宮田:それができていない。我々がなぜサプライチェーンの真ん中の物流施設に力を入れているかというと、ひとつには上流工程のデータと配送側のデータが連携していないことで膨大なムダが起きているからです。国交省のデータを見ればわかりますが、実はドライバー不足といいながら、いま全国の営業車両の積載率は4割です。ですから、我々はDyASを使って、あるいは次世代物流センターを普及させることによって、出庫を精度高く予測し、その情報をリアルタイムに近い形で配送会社に対して提供していき、全体の最適化を進めていきたいんです。

ロボット開発はビジョンを
共有できるパートナーと

杉原:HERO Xの読者にはロボットを開発している人も多いので、ロボットで御社に参入できるか?ということが気になると思います。もしくは御社と一緒になにかやることは可能なのでしょうか?

宮田:実際にこのPEERという自律型協働ロボットを物理的に開発しているのは、中国の大手ロボットメーカーです。彼らはビジュアルスラムと制御系の技術に優れているので、本当に性能の高いロボットを開発できます。でも、我々はグローバルで主要なロボットベンチャーメーカーと接触しているのですが、99%物流現場では使えません。なぜかというと、ロボットエンジニアは物流のことがわからないからです。大事なのは本当に実務レベルで使えるものに仕上げられるかということ。彼らには物流の経験も専門知識もないので、我々はそのノウハウを提供する。おそらく、そういう開発になっていくと思います。

杉原:ということは、パートナーは特化した考え方を共有でき、かつ違いの強みを生かせる会社ということですね。

宮田:そうですね。例えばこの中国の企業はビジュアルスラムに非常に優れているけれど、右から左にピッキングするための技術はもっていない。じゃあ、ピッキングのロボットについては、アメリカのSoft Robotics社と提携する、という形ですね。

杉原:そのピッキングは、遠隔操作にならないんですか。

宮田:将来的には十分それは可能だと思います。

杉原:そうしたら、在宅の仕事になりますよね。

宮田:その通りです。そうすると、別に日本である必要もなくなる。

杉原:24時間回せますもんね。

宮田:それを監視するだけでも十分なニーズがあると思います。

宮⽥啓友(みやた・ひらとも)
株式会社GROUND 代表取締役社⻑/CEO
上智⼤学法学部卒。1996年 株式会社三和銀⾏⼊⾏。2000年 デロイトトーマツコンサルティング(現:アビームコンサルティング)⼊社。⼤⼿流通業を中⼼にロジスティクス・サプライチェーン改⾰のプロジェクトに従事。2004年 アスクル株式会社⼊社。ロジスティクス部⾨⻑として⽇本国内の物流センター運営を⾏う。2007年 楽天株式会社⼊社。物流事業準備室⻑を経て2008年 物流事業⻑就任。2010年 楽天物流株式会社設⽴、代表取締役社⻑就任。2012年 楽天株式会社執⾏役員物流事業⻑就任。同年フランスのフルフィルメントプロバイダAlpha Direct Services SASを買収し、マネージングディレクターを兼務する。2013年アメリカのフルフィルメントプロバイダWebgistixを買収。2015年4⽉ GROUND株式会社設⽴。

(text: 吉田直子)

(photo: 増元幸司)

  • Facebookでシェアする
  • LINEで送る

PICK UP 注目記事

CATEGORY カテゴリー